Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P\left(x\right)=-x^2+13x-42,25+1969,75\)
\(P\left(x\right)=-\left(x^2-2\cdot6.5\cdot x+6.5^2\right)+1969,75\)
\(P\left(x\right)=-\left(x-6,5\right)^2+1969,75\le1969,75\)
Dấu \("="\) xảy ra khi \(x-6,5=0\Rightarrow x=6,5\)
Vậy MaxP=1969,75 khi x=6,5
Bạn ơi tìm GTNN mới đúng
A = (x^2+13x+42,25) + 1969,75 = (x+6,5)^2 + 1969,75 >= 1969,75
Dấu "=" xảy ra <=> x+6,5 = 0
<=> x= -6,5
Vậy Min A = 1969,75 <=> x= -6,5
A=(x^2+2.13/2+169/4)-169/4
A=(x+13/2)^2-169/4
Vì(x+13/2)^2\(\ge\)0
->(x+13/2)^2-169/4\(\ge\)169/4
Dấu "=" xảy ra<=> x+13/2=0<=> x=-13/2
Vậy Min của A là 169/4<=> x=-13/2
\(K=-x^2+13x+2012=x^2+13x-\frac{169}{4}+\frac{8217}{4}\)
\(=\left(-x^2+13x-\frac{169}{4}\right)+\frac{8217}{4}\)
Mà \(-x^2+13x-\frac{169}{4}=2x\left(-\frac{1}{2}x+\frac{13}{2}\right)-\frac{169}{4}\le0\) ( do \(2x\left(-\frac{1}{2}x+\frac{13}{2}\right)\le\frac{169}{4}\))
Do đó \(K=\left(-x^2+13x-\frac{169}{4}\right)+\frac{8217}{4}\le\frac{8217}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow2x\left(-\frac{1}{2}x+\frac{13}{2}\right)=\frac{169}{4}\Leftrightarrow x=\frac{13}{2}\)
Vậy \(K_{max}=\frac{8217}{4}\Leftrightarrow x=\frac{13}{2}\)
C = 5 x - x 2 = - x 2 - 5 x = - x 2 - 2 . 5 / 2 x + 5 / 2 2 - 5 / 2 2 = - x - 5 / 2 2 - 25 / 4 = - x - 5 / 2 2 + 25 / 4 V ì - x - 5 / 2 2 ≤ 0 ⇒ - x - 5 / 2 2 + 25 / 4 ≤ 25 / 4
Suy ra: C ≤ 25/4 .
C = 25/4 khi và chỉ khi x - 5/2 = 0 suy ra x = 5/2
Vậy C = 25/4 là giá trị lớn nhất tại x = 5/2 .
`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`
\(C=13x+2012-x^2\)
\(=-\left(x^2-13x+\dfrac{169}{4}\right)+\dfrac{7879}{4}\)
\(=-\left(x-\dfrac{13}{2}\right)^2+\dfrac{7879}{4}\)
Nhận xét :
\(\left(x-\dfrac{13}{2}\right)^2\ge0\)
\(\Leftrightarrow-\left(x-\dfrac{13}{2}\right)^2\le0\)
\(\Leftrightarrow-\left(x-\dfrac{13}{2}\right)+\dfrac{7879}{4}\le\dfrac{7879}{4}\)
\(\Leftrightarrow C\le\dfrac{7879}{4}\)
Dấu "=" xảy ra khi : \(\left(x-\dfrac{13}{2}\right)^2=0\Leftrightarrow x=\dfrac{13}{2}\)
Vậy...