K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2021

ĐKXĐ: x2-8x+14≥0 ⇔ \(x^2-\left(4+\sqrt{2}\right)x-\left(4-\sqrt{2}\right)x+14\)≥0

⇔ \(x\left(x-4-\sqrt{2}\right)-\left(4-\sqrt{2}\right)\left(x-4-\sqrt{2}\right)\)≥0

⇔ \(\left(x-4-\sqrt{2}\right)\left(x-4+\sqrt{2}\right)\)≥0

⇔ {x-4-√2≥0             ⇔  x≥4+√2

  [

    {x-4+√2≥0

⇔ {x-4-√2≤0               ⇔  x≤4-√2

  [

    {x-4+√2≤0

⇔ x≥4+√2, x≤4-√2 

Vậy ...

 

Xét :  \(x^2-8x+14\ge0\)

\(\Leftrightarrow x^2-2.x.4+16-2\ge0\)

\(\Leftrightarrow\left(x-4\right)^2-2\ge0\)

\(\Leftrightarrow\left(x-4+\sqrt{2}\right)\left(x-4-\sqrt{2}\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-4+\sqrt{2}\ge0\\x-4-\sqrt{2}\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-4+\sqrt{2}\le0\\x-4-\sqrt{2}\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge4-\sqrt{2}\\x\ge4+\sqrt{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le4-\sqrt{2}\\x\le4+\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge4+\sqrt{2}\\x\le4-\sqrt{2}\end{matrix}\right.\)

Vậy \(x\ge4+\sqrt{2}\) ; \(x\le4-\sqrt{2}\) thì căn thức đc xác định.

 

3 tháng 4 2018

Điều kiện xác định của biểu thức là:

\(2x+1>0\) được \(x>-\dfrac{1}{2}\)

\(x^2\le16\) được \(-4\le x\le4\)

\(x^2-8x+14\ge0\)

\(x^2-8x+14\ge0\Leftrightarrow\left(x-4\right)^2\ge2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4\le-\sqrt{2}\\x-4\ge\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\le4-\sqrt{2}\\x\ge4+\sqrt{2}\end{matrix}\right.\)

Vậy đkxđ của biểu thức là:

\(-\dfrac{1}{2}< x\le4-\sqrt{2}\)

10 tháng 8 2017

a, dk \(1-16x^2\ge0\Leftrightarrow\left(1-4x\right)\left(1+4x\right)\ge0\)

        \(\Leftrightarrow-\frac{1}{4}\le x\le\frac{1}{4}\)

b tuong tu

c, \(\sqrt{\left(x-3\right)\left(5-x\right)}\ge0\Leftrightarrow\left(x-3\right)\left(5-x\right)\ge0\Leftrightarrow3\le x\le5\)

d.\(\sqrt{x^2-x+1}>0\)

ma \(x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

suy ra thoa man vs moi x

6 tháng 6 2019

\(a,\)\(\sqrt{\frac{1}{\left(x-3\right)^2}}\)

\(đk:\)\(\frac{1}{\left(x-3\right)^3}\ne0\)\(\Rightarrow\left(x-3\right)^3\ne0\)\(\Leftrightarrow x\ne3\)

Và \(\frac{1}{\left(x-3\right)}>0\Rightarrow x-3>0\)\(\Rightarrow x>3\)

Vậy để căn thức xác định thì x > 3

6 tháng 6 2019

\(\sqrt{8x-x^2-15}\)

\(=\sqrt{-\left(x^2-8x+15\right)}\)

\(=\sqrt{-\left(x^2-8x+16-1\right)}\)

\(=\sqrt{-\left[\left(x^2-8x+16\right)-1\right]}\)

\(=\sqrt{-\left(x-4\right)^2+1}\)

\(đk:\)\(-\left(x-4\right)^2+1\ge0\)

\(\Rightarrow\left(x-4\right)^2\le1\)

\(\Rightarrow\orbr{\begin{cases}\left(x-4\right)^2=1\\\left(x-4\right)^2=0\end{cases}}\)

\(\left(x-4\right)^2=1\Rightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}\)

\(\left(x-4\right)^2=0\Rightarrow x=4\)

Vậy căn thức xác định \(\Leftrightarrow x=\left\{3;4;5\right\}\)

NV
23 tháng 9 2019

a/ \(1-16x^2\ge0\Rightarrow x^2\le16\Rightarrow-\frac{1}{4}\le x\le\frac{1}{4}\)

b/ \(\left\{{}\begin{matrix}x^2-3\ge0\\x^2-3\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\sqrt{3}\\x\le-\sqrt{3}\end{matrix}\right.\\x\ne\pm2\end{matrix}\right.\)

c/ \(8x-x^2-15\ge0\Rightarrow3\le x\le5\)

d/ Hàm số xác định với mọi x

e/ \(\left\{{}\begin{matrix}x\ge\frac{1}{2}\\x\ne1\end{matrix}\right.\)

f/ \(\left\{{}\begin{matrix}-4\le x\le4\\x>-\frac{1}{2}\\\left[{}\begin{matrix}x\ge4+\sqrt{2}\\x\le4-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow-\frac{1}{2}< x\le4-\sqrt{2}\)

2 tháng 8 2021

\(\left\{{}\begin{matrix}16-x^2\ge0\\2x+1>0\\x^2-8x+14\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4\le x\le4\\x>-\dfrac{1}{2}\\\left[{}\begin{matrix}x\ge4+\sqrt{2}\\x\le4-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow-\dfrac{1}{2}< x\le4-\sqrt{2}\)

2 tháng 8 2021

xác định \(< =>\left\{{}\begin{matrix}\sqrt{16-x^2}\ge0\\\sqrt{2x+1}>0\\\sqrt{x^2-8x+14}\ge0\end{matrix}\right.\)

\(< =>\left\{{}\begin{matrix}-4\le x\le4\\x>-\dfrac{1}{2}\\\left[{}\begin{matrix}x\le4-\sqrt{2}\\x\ge4_{ }+\sqrt{2}\end{matrix}\right.\\\end{matrix}\right.\)\(< =>-\dfrac{1}{2}< x\le4-\sqrt{2}\)

22 tháng 5 2019

\(\sqrt{x^2-8x+16}=\sqrt{x^2-2.4x+4^2}=\sqrt{\left(x-4\right)^2}=\left|x-4\right|\)

Vậy đkxđ là x ∈ R

22 tháng 5 2019

Ta có \(\sqrt{x^2-8x+16}=\sqrt{x^2-2.x.4+4^2}=\sqrt{\left(x-4\right)^2}\)

Vì (x-4)2\(\ge0\) nên biểu thức \(\sqrt{x^2-8x+16}\) luôn xác định với mọi x\(\in R\)

ĐKXĐ: \(x-\sqrt{\left(x-2\right)^2}>=0\)

=>x>=|x-2|

=>x^2>=(x-2)^2 và x>=0

=>0>=-4x+4 và x>=0

=>x>=0 và -4x+4<=0

=>x>=0 và -4x<=-4

=>x>=1

12 tháng 9 2023

\(E=\sqrt{x-\sqrt{\left(x-2\right)^2}}=\sqrt{x-\left|x-2\right|}\)

\(DKXD:\left[{}\begin{matrix}x-x+2\ge0\\x+x-2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2\ge0\left(LD\right)\\2x\ge2\end{matrix}\right.\) \(\Leftrightarrow x\ge1\)