\(^{10^x:5^y=20^y}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2016

Ta có: 10: 5 = 20y

=> 10x = 20y . 5y

=> 10x = 100y

Mà 102 = 100 => x = 2; y = 1

4 tháng 1 2017

a) \(\Rightarrow10^x=20^y.5^y\)

\(\Rightarrow10^x=100^y\)

\(\Rightarrow10^x=10^{2y}\)

\(\Rightarrow x=2y\)

Vậy mọi x=2y đều thỏa mãn

16 giờ trước (14:47)

Giải:

2\(^{x+1}\).3\(^{y}\) = 12\(^{x}\)

2.2\(^{x}\).3.3\(^{y-1}\) = 12\(^{x}\)

2.3.3\(^{y-1}\) = 12\(^{x}\): 2\(^{x}\)

6.3\(^{y-1}\) = 6\(^{x}\)

3\(^{y-1}\) = 6\(^{x}\): 6

3\(^{y-1}\) = 6\(^{x-1}\)

\(\begin{cases}y-1=0\\ x-1=0\end{cases}\)

\(\begin{cases}y=1\\ x=1\end{cases}\)

Vậy cặp số tự nhiên thỏa mãn đề bài là: (\(x;y\)) = (1; 1)


16 giờ trước (14:46)

Olm chào em. Đây là toán nâng cao chuyên đề toán lũy thừa với phương trình nghiệm nguyên. Cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:

Giải:

2\(^{x+1}\).3\(^{y}\) = 12\(^{x}\)

2.2\(^{x}\).3.3\(^{y-1}\) = 12\(^{x}\)

2.3.3\(^{y-1}\) = 12\(^{x}\): 2\(^{x}\)

6.3\(^{y-1}\) = 6\(^{x}\)

3\(^{y-1}\) = 6\(^{x}\): 6

3\(^{y-1}\) = 6\(^{x-1}\)

\(\begin{cases}y-1=0\\ x-1=0\end{cases}\)

\(\begin{cases}y=1\\ x=1\end{cases}\)

Vậy cặp số tự nhiên thỏa mãn đề bài là: (\(x;y\)) = (1; 1)


31 tháng 7 2015

vì 10 : 5 = 2

nên x = 2y

vậy x = 2y

27 tháng 5 2017

vi 10:5=2

nenx=2y

vayx=2y

28 tháng 12 2018

\(2^{x+1}.3^y=12^x\Leftrightarrow2^x.2.3^y=12^x\Leftrightarrow2.3^y=6^x\Leftrightarrow2.3^y=2^x.3^x\)

Xét y=0 \(\Rightarrow2.3^0=6^x\Leftrightarrow2=6^x\) (pt vô nghiệm)

Xét y=1 \(\Rightarrow6=6^x\Leftrightarrow x=1\)

Xét \(y\ge2\Rightarrow x>1\) 

\(\Leftrightarrow3^y=2^{x-1}.3^x\) (VT không chia hết cho 2, VP chia hết cho 2 suy ra vô lí)

25 tháng 2 2020

\(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)-5^y=11879\)

\(\Rightarrow\left(2^x+1\right)\left(2^x+4\right)\left(2^x+2\right)\left(2^x+3\right)=11879+5^y\)

\(\Rightarrow\left(2^{2x}+5.2^x+4\right)\left(2^{2x}+5.2^x+6\right)=11879+5^y\)(1)

Đặt \(2^{2x}+5.2^x+4=k\)

\(\left(1\right)\)trở thành: \(t\left(t+2\right)=11879+5^y\)

\(\Rightarrow t^2+2t+1=11880+5^y\)

\(\Rightarrow\left(t+1\right)^2=11880+5^y\)

hay \(\left(2^{2x}+5.2^x+5\right)^2=11880+5^y\)

+) Xét y = 0 thì \(\left(2^{2x}+5.2^x+5\right)^2=11881\)

\(\Rightarrow2^{2x}+5.2^x+5=109\)

\(\Rightarrow2^{2x}+5.2^x=104\Rightarrow2^x\left(8+5\right)=104\)

\(\Rightarrow2^x=8\Rightarrow x=3\)

+) Xét \(y>0\)thì \(11880+5^y⋮5\)

Mà \(\left(2^{2x}+5.2^x+5\right)^2\)không chia hết cho 5 nên loại y >0

Vậy y = 0; x = 3

25 tháng 2 2020

Anh có cách này khác nè, em tham khảo nhé !!

Ta có : \(2^x\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)⋮5\)

mà : \(2^x⋮̸5\) \(\Rightarrow\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)⋮5\)

Mặt khác \(11879⋮̸5\Rightarrow5^y⋮̸5\)

\(\Rightarrow y=0\)

\(\Rightarrow\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)=11880=9\cdot10\cdot11\cdot12\)

\(\Rightarrow x=3\) ( thỏa mãn )

Vậy : \(x=3,y=0\) thỏa mãn đề.

1 tháng 7 2018

\(10^x:5^y=20^y\)

\(10^x=20^y\cdot5^y=100^y\)

\(\Rightarrow10^x=\left(10^2\right)^y=10^{2y}\)

\(\Rightarrow x=2y\)

\(5x^3=3^y+317\)\

Xét : \(5x^3\)có tận cùng là 0 nếu x là chẵn còn 5 nếu x là lẻ 

Nếu x là lẻ thì \(3^y+317\)sẽ có tận cùng là 5 

\(\Rightarrow3^y\)có tận cùng là 8 => Vô lý vì \(3^y\)là số lẻ