Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy \(y^2+2xy+x^2-x^2-7x+12=0\)
\(\Leftrightarrow\left(x+y\right)^2=x^2+7x+12\)
\(\Leftrightarrow\left(x+y\right)^2=\left(x+3\right)\left(x+4\right)\)(1)
Vì\(x,y\varepsilonℤ\)nên\(\left(x+y\right)^2\)là số chính phương và \(\left(x+3\right)\left(x+4\right)\)là tích 2 số nguyên liên tiếp (2)
Từ (1) và (2) ta được
\(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(x+3\right)\left(x+4\right)=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x+y=0\\\orbr{\begin{cases}x+3=0\\x+4=0\end{cases}}\end{cases}}\)
Giải ra tìm được x,y
\(\hept{\begin{cases}\left(x+y\right)^2=0\\\orbr{\begin{cases}x+3=0\\x+4=0\end{cases}}\end{cases}}\)
ta có:\(y^2+2xy-7x-12=0\)
\(\Leftrightarrow y^2+2xy+x^2=x^2+7x+12\)
\(\Leftrightarrow\left(x+y\right)^2=\left(x+3\right)\left(x+4\right)\)*
Vế trái của * là số chính phương, vế phải là tích của 2 số liên tiếp nên phải có 1 số bằng 1
Do đó:\(\orbr{\begin{cases}x+3=0\\x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}y=3\\y=4\end{cases}}}\)
Vậy phương trình có 2 nghiệm là (x;y)=(-3;3),(-4;4)
\(y^2+2xy-3x-2=0\)
\(\Leftrightarrow\left(y^2+2xy+x^2\right)-\left(x^2+3x+2\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+2=0\end{matrix}\right.\)
Nếu \(x+1=0\) thì \(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\).
Nếu \(x+2=0\) thì \(\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\)
Thử lại, ta thấy thỏa mãn. Vậy ta tìm được các cặp số \(\left(x;y\right)\) thỏa mãn đề bài là \(\left(-1;1\right),\left(-2;2\right)\)
\(x^2+2xy+7.\left(x+y\right)+2y^2+10=0\)
\(\Leftrightarrow\left(x+y^2\right)+7.\left(x+y\right)+\dfrac{49}{4}+y^2-\dfrac{9}{4}=0\)
\(\Leftrightarrow\left(x+y+\dfrac{7}{2}^2\right)=\dfrac{9}{4}-y^2\)
\(Do\left(x+y+\dfrac{7}{2}^2\right)\ge0\Rightarrow\dfrac{9}{4}-y^2\ge0\Rightarrow y^2\le\dfrac{9}{4}\)
Mà y nguyên \(\Rightarrow\left\{{}\begin{matrix}y^2\\\\y^2=1\end{matrix}\right.=0\)
Thay vào phương trình đầu:
Với \(y=0\Rightarrow x^2+7x+10=0\Rightarrow\left\{{}\begin{matrix}x=-2\\\\\\x=-5\end{matrix}\right.\)
Với \(y=1\Rightarrow x^2+9x+19=0\Rightarrow\) không có x nguyên
Với \(y=-1\Rightarrow x^2+5x+5=0\Rightarrow\) không có x nguyên
\(2x^2+7x+7y+2xy+y^2+12=0\)
\(\Leftrightarrow\left(x^2+y^2+4+2\left(xy+2x+2y\right)\right)+3\left(x+y+2\right)+2=-x^2\)
\(\Leftrightarrow\left(x+y+2\right)^2+3\left(x+y+2\right)+2=-x^2\)
\(\Leftrightarrow P^2+3P+2=-x^2\le0\)
\(\Leftrightarrow-2\le P\le-1\)
\(y^2+2xy-3x-2=0.\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)-\left(x^2+3x+2\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\)
Vì Vế trái là số chính phương nên vế phải cx là số chính phương!! nhưng trong trường hợp này VP ko thế nào là số chính phương đc!!
=> x+1=0 hoặc x+2=0
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\Rightarrow y=1\\x=-2\Rightarrow y=2\end{cases}}}\)
Vậy...
Ta có \(y^2-2xy-3x-2=0\Leftrightarrow x^2+2xy+y^2=x^2+3x+2\) (*)
\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\)
VT của (*) là số chính phương; VP của (*) là tách của 2 số nguyên liên tiếp nên phải có 1 số bằng 0
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\Rightarrow y=1\\x=2\Rightarrow y=2\end{cases}}}\)
Vậy có 2 cặp số nguyên (x;y)=(-1;1);(-2;2)
Akai Haruma em có cách này nhưng khá là dài...
Coi pt trên là pt bậc 2 ẩn y. Để pt có nghiệm thì
\(\Delta'=x^2-\left(-7x-12\right)\ge0\Leftrightarrow x\le-4\text{ hoặc }x\ge-3\)
Để pt có nghiệm nguyên \(\Delta'=k^2\Leftrightarrow x^2+7x+12=k^2\Leftrightarrow\left(x+\frac{7}{2}\right)^2-k^2=\frac{1}{4}\)
\(\Leftrightarrow\left(2x+7\right)^2-\left(2k\right)^2=1\)\(\Leftrightarrow\left(2x-2k+7\right)\left(2x+2k+7\right)=1\)
TH1: \(\left\{{}\begin{matrix}2x-2k+7=1\\2x+2k+7=1\end{matrix}\right.\Leftrightarrow x=-3\Rightarrow y=3\) (thay vào pt ban đầu rồi giải pt bậc 1:D)
TH2: \(\left\{{}\begin{matrix}2x-2k+7=-1\\2x+2k+7=-1\end{matrix}\right.\Leftrightarrow x=-4\Rightarrow y=4\) (thay vào pt ban đầu rồi giải pt bậc 1:D)
Có cần thử lại ko ta?:D em nghĩ là ko:v
Lời giải:
\(x^2+2xy-7x-12=0\)
\(\Leftrightarrow y^2+2xy+x^2=x^2+7x+12\)
\(\Leftrightarrow x^2+7x+12=(x+y)^2=t^2\)
\(\Leftrightarrow 4x^2+28x+48=(2t)^2\)
\(\Leftrightarrow (2x+7)^2-1=(2t)^2\)
\(\Leftrightarrow (2x+7-2t)(2x+7+2t)=1\)
Nếu \(\left\{\begin{matrix} 2x+7-2t=1\\ 2x+7+2t=1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=-3\\ x+y=t=0\end{matrix}\right.\Rightarrow x=-3; y=3\)
Nếu \(\left\{\begin{matrix} 2x+7-2t=-1\\ 2x+7+2t=-1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=-4\\ x+y=t=0\end{matrix}\right.\Rightarrow x=-4; y=4\)
Thử lại......