Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y^2+2xy-\left(3x+2\right)=0\) (1)
Để (1) có nghiệm thì \(\Delta'=x^2-\left[-4\left(3x+2\right)\right]\ge0\)
\(\Leftrightarrow x^2+12x+8\ge0\Leftrightarrow\orbr{\begin{cases}x\le-6-2\sqrt{7}\\-6+2\sqrt{7}\le x\end{cases}}\)
Để (1) có nghiệm thì \(\Delta'\) là số chính phương.Đặt:
\(x^2+12x+8=k^2\Leftrightarrow\left(x+6\right)^2-28=k^2\)
\(\Leftrightarrow\left(x+6\right)^2-k^2=28\Leftrightarrow\left(x+6-k\right)\left(x+6+k\right)=28\)
Dễ thấy: \(x+6-k< x+6+k\).Lập bảng các ước của 28 và làm tiếp -_-
\(3x^2-y^2=2xy\Leftrightarrow\left(x^2-2xy+y^2\right)+2\left(x^2-y^2\right)=0\Leftrightarrow\left(x-y\right)^2+2\left(x-y\right)\left(x+y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-y+2x+2y\right)=0\Leftrightarrow\left(x-y\right)\left(3x+y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\3x+y=0\end{cases}}\)
Từ đó biểu diễn y theo x rồi thay vào A để tính :)
\(\Leftrightarrow3x^2+x\left(2y^2-y-3\right)-\left(2y^2-y-3\right)=0\)
đặt \(\left(2y^2-y-3\right)=m\)với m là số tự nhiên nên phương trình trở thành
\(\Leftrightarrow3x^2+mx-m=0\)
có \(\Delta=m^2+12m=\left(m+6\right)^2-36=k^2\)vì x,y nguyên nên \(\Delta\)là số chính phương
\(\Leftrightarrow\left(m+6-k\right)\left(m+6+k\right)=36\)
m+6-k và m+6+k là ước của 36 ta xét các trường hợp có thể sảy ra (36,6);(18,2);(12,3);(9,4);(6,6).
- \(\hept{\begin{cases}m+6+k=36\\m+6-k=1\end{cases}}\Leftrightarrow2m=25\)không thỏa mãn
- \(\hept{\begin{cases}m+6+k=18\\m+6-k=2\end{cases}}\Leftrightarrow2m=8\Leftrightarrow m=4\)\(\Rightarrow\Delta=64;2y^2-y-3=4\Leftrightarrow2y^2-y-7=0\)\(\Leftrightarrow\Delta_1=1^2+2.4.7=57\) loại
- \(\hept{\begin{cases}m+6+k=12\\m+6-k=3\end{cases}}\Leftrightarrow2m=3\)loại
- \(\hept{\begin{cases}m+6+k=9\\m+6-k=4\end{cases}}\Leftrightarrow2m=1\)loại
5.\(\hept{\begin{cases}m+6+k=6\\m+6-k=6\end{cases}}\Leftrightarrow2m=0\Leftrightarrow m=0\)
\(2y^2-y-3=0\Leftrightarrow\orbr{\begin{cases}y=-1\\y=\frac{3}{2}\end{cases}}\)\(\Rightarrow y=-1\)
thay m=0 có \(\Delta=0\)phương trình ban đầu trở thành
\(3x^2=0\Leftrightarrow x=0\)
vậy cặp (x,y) nguyên là (0,-1)
\(2y^2+2xy+x+3y-13=0\)
\(\Leftrightarrow2y\left(y+x\right)+x+y+2y=13\)
\(\Leftrightarrow\left(x+y\right)\left(2y+1\right)+2y+1=14\)
\(\Leftrightarrow\left(2y+1\right)\left(x+y+1\right)=14\)
Rồi bạn làm từng cặp ra nhé!
<=>\(x^2+2x\left(y-1\right)-3y^2+6y-8=0\)
coi phương trình là phương trình bậc 2 theo ẩn x nên ta có
\(\Delta^'=\left(y-1\right)^2+3y^2-6y+8\)
\(\Delta^'=4y^2-8y+9=\left(2y-4\right)^2-7\)
để phương trình có nghiệm x ,y nguyên thì \(\Delta^'=k^2\)
với k là số tự nhiên
\(\left(2y-4\right)^2-7=k^2\Leftrightarrow\left(2y-4+k\right)\left(2y-4-k\right)=7\)
khi đó (2y-4+k) và (2y-4-k) là ước của 7 là (1,7) do đó ta có hệ
\(\hept{\begin{cases}2y-4+k=7\\2y-4-k=1\end{cases}}\Leftrightarrow4y=16\Leftrightarrow y=4\)
với y=4 thay vào ta có
\(\Delta^'=\left(2.4-4\right)^2-7=9\)
\(\orbr{\begin{cases}x=\left(1-y\right)-3=1-4-3=-6\\x=\left(1-y\right)+3=1-4+3=0\end{cases}}\)
vậy (x,y)= (0,4) hoặc (-6,4)
\(PT\Leftrightarrow\left[\left(x^2+y^2+2xy\right)-2x-2y+1\right]+\left(2x^2-12y+18\right)=0\)
\(\Leftrightarrow\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]+2\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)^2+2\left(x-3\right)^2=0\)
\(y^2+2xy-3x-2=0.\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)-\left(x^2+3x+2\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\)
Vì Vế trái là số chính phương nên vế phải cx là số chính phương!! nhưng trong trường hợp này VP ko thế nào là số chính phương đc!!
=> x+1=0 hoặc x+2=0
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\Rightarrow y=1\\x=-2\Rightarrow y=2\end{cases}}}\)
Vậy...
Ta có \(y^2-2xy-3x-2=0\Leftrightarrow x^2+2xy+y^2=x^2+3x+2\) (*)
\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\)
VT của (*) là số chính phương; VP của (*) là tách của 2 số nguyên liên tiếp nên phải có 1 số bằng 0
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\Rightarrow y=1\\x=2\Rightarrow y=2\end{cases}}}\)
Vậy có 2 cặp số nguyên (x;y)=(-1;1);(-2;2)