Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-3y^2+2xy-2x+6y-4=0\)
\(\Leftrightarrow\left(x-y+1\right)\left(x+3y-3\right)=1\)
Làm nôt
Viết pt trên thành pt bậc 2 đối với x:\(x^2+2x\left(y-1\right)-\left(3y^2-6y+4\right)=0\) (1)
Pt (1) có nghiệm \(\Leftrightarrow\Delta'=\left(y-1\right)^2+\left(3y^2-6y+4\right)\ge0\)
\(\Leftrightarrow4y^2-8y+5\ge0\),Ta cần có \(\Delta'=k^2\)
Tức là \(4y^2-8y+5=k^2\Leftrightarrow4\left(y-1\right)^2+1=k^2\)
\(\Leftrightarrow\left(2y-2\right)^2-k^2=-1\Leftrightarrow\left(2y-2-k\right)\left(2y-2+k\right)=-1\)
Đến đây bí!
Phương trình đã cho có thể được viết:
\(\left(x-y+1\right)\left(x+3y-3\right)=5\)
Do x, y là các số nguyên nên phương trình trên tương đương với:
\(\left\{\begin{matrix}x-y+1=1\\x+3y-3=5\end{matrix}\right.\) hay \(\left\{\begin{matrix}x-y+1=5\\x+3y-3=1\end{matrix}\right.\)
Giải các hệ phương trình nên ta suy ra:
\(x=y=2\) hay \(x=4;y=0\)
\(2y^2+2xy+x+3y-13=0\)
\(\Leftrightarrow2y\left(y+x\right)+x+y+2y=13\)
\(\Leftrightarrow\left(x+y\right)\left(2y+1\right)+2y+1=14\)
\(\Leftrightarrow\left(2y+1\right)\left(x+y+1\right)=14\)
Rồi bạn làm từng cặp ra nhé!
5x2+2y+y2-4x-40=0
△=(-4)2-4.5.(2y+y2-40)
△=16-40y-20y2+800
△=-(784+40y+20y2)
△=-(32y+8y+16y2+4y2+16+4+764)
△=-[(4y+4)2+(2y+2)2+764]<0
=>PHƯƠNG TRÌNH VÔ NGHIỆM.
\(x^2-2xy-3y^2=3x-y+2\)
\(\Leftrightarrow x^2-2xy-3x-3y^2+y-2=0\)
\(\Leftrightarrow x^2-x\left(2y+3\right)-3y^2+y-2=0\)
\(\Leftrightarrow4x^2-4x\left(2y+3\right)+\left(2y+3\right)^2-\left(2y+3\right)^2-12y^2+4y-8=0\)
\(\Leftrightarrow\left(2x-2y-3\right)^2-4y^2-12y-9-12y^2+4y-8=0\)
\(\Leftrightarrow\left(2x-2y-3\right)^2-16y^2-8y-17=0\)
\(\Leftrightarrow\left(2x-2y-3\right)^2-\left(16y^2+8y+1\right)=16\)
\(\Leftrightarrow\left(2x-2y-3\right)^2-\left(4y+1\right)^2=16\)
\(\Leftrightarrow\left(2x-6y-4\right)\left(2x+2y-2\right)=16\)
\(\Leftrightarrow\left(x-3y-2\right)\left(x+y-2\right)=4\)
Đến đây bn tự giải nha
đoạn cuối là \(\Leftrightarrow\left(x-3y-2\right)\left(x+y-1\right)=4\)
<=>\(x^2+2x\left(y-1\right)-3y^2+6y-8=0\)
coi phương trình là phương trình bậc 2 theo ẩn x nên ta có
\(\Delta^'=\left(y-1\right)^2+3y^2-6y+8\)
\(\Delta^'=4y^2-8y+9=\left(2y-4\right)^2-7\)
để phương trình có nghiệm x ,y nguyên thì \(\Delta^'=k^2\)
với k là số tự nhiên
\(\left(2y-4\right)^2-7=k^2\Leftrightarrow\left(2y-4+k\right)\left(2y-4-k\right)=7\)
khi đó (2y-4+k) và (2y-4-k) là ước của 7 là (1,7) do đó ta có hệ
\(\hept{\begin{cases}2y-4+k=7\\2y-4-k=1\end{cases}}\Leftrightarrow4y=16\Leftrightarrow y=4\)
với y=4 thay vào ta có
\(\Delta^'=\left(2.4-4\right)^2-7=9\)
\(\orbr{\begin{cases}x=\left(1-y\right)-3=1-4-3=-6\\x=\left(1-y\right)+3=1-4+3=0\end{cases}}\)
vậy (x,y)= (0,4) hoặc (-6,4)