Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
\(xy^2+2xy+x=32y\)
\(\Leftrightarrow x\left(y^2+2y+1\right)=32y\)
\(\Leftrightarrow x=\frac{32y}{y^2+2y+1}\)
\(\Leftrightarrow\frac{32y}{\left(y+1\right)^2}\)
\(\Leftrightarrow x=\frac{32y}{y+1}-\frac{32y}{\left(y+1\right)^2}\)
Để x là số nguyên dương thì
\(\left(y+1\right)^2\inƯ_{\left(32\right)}\)và\(\left(y+1\right)^2\)là số chính phương
\(\Rightarrow\left(y+1^2\right)=\left\{1;4;16\right\}\)
\(\Leftrightarrow y+1=\left\{1;2;4\right\}\)
\(\Leftrightarrow y=\left\{0;1;3\right\}\)
Vì y là số nguyên dương
Nên: \(\hept{\begin{cases}y=1\Rightarrow x=8\\y=3\Rightarrow x=6\end{cases}}\)
Vậy x = 8; y = 1
hoặc x = 6; y = 3
# Chúc bạn học tốt #
Bạn có thể giải thích rõ dòng: 4 và 5 không. Mình thấy nó chưa được chính xác.
\(x^2-2xy-3y^2=3x-y+2\)
\(\Leftrightarrow x^2-2xy-3x-3y^2+y-2=0\)
\(\Leftrightarrow x^2-x\left(2y+3\right)-3y^2+y-2=0\)
\(\Leftrightarrow4x^2-4x\left(2y+3\right)+\left(2y+3\right)^2-\left(2y+3\right)^2-12y^2+4y-8=0\)
\(\Leftrightarrow\left(2x-2y-3\right)^2-4y^2-12y-9-12y^2+4y-8=0\)
\(\Leftrightarrow\left(2x-2y-3\right)^2-16y^2-8y-17=0\)
\(\Leftrightarrow\left(2x-2y-3\right)^2-\left(16y^2+8y+1\right)=16\)
\(\Leftrightarrow\left(2x-2y-3\right)^2-\left(4y+1\right)^2=16\)
\(\Leftrightarrow\left(2x-6y-4\right)\left(2x+2y-2\right)=16\)
\(\Leftrightarrow\left(x-3y-2\right)\left(x+y-2\right)=4\)
Đến đây bn tự giải nha
đoạn cuối là \(\Leftrightarrow\left(x-3y-2\right)\left(x+y-1\right)=4\)
\(\Leftrightarrow3x^2+x\left(2y^2-y-3\right)-\left(2y^2-y-3\right)=0\)
đặt \(\left(2y^2-y-3\right)=m\)với m là số tự nhiên nên phương trình trở thành
\(\Leftrightarrow3x^2+mx-m=0\)
có \(\Delta=m^2+12m=\left(m+6\right)^2-36=k^2\)vì x,y nguyên nên \(\Delta\)là số chính phương
\(\Leftrightarrow\left(m+6-k\right)\left(m+6+k\right)=36\)
m+6-k và m+6+k là ước của 36 ta xét các trường hợp có thể sảy ra (36,6);(18,2);(12,3);(9,4);(6,6).
- \(\hept{\begin{cases}m+6+k=36\\m+6-k=1\end{cases}}\Leftrightarrow2m=25\)không thỏa mãn
- \(\hept{\begin{cases}m+6+k=18\\m+6-k=2\end{cases}}\Leftrightarrow2m=8\Leftrightarrow m=4\)\(\Rightarrow\Delta=64;2y^2-y-3=4\Leftrightarrow2y^2-y-7=0\)\(\Leftrightarrow\Delta_1=1^2+2.4.7=57\) loại
- \(\hept{\begin{cases}m+6+k=12\\m+6-k=3\end{cases}}\Leftrightarrow2m=3\)loại
- \(\hept{\begin{cases}m+6+k=9\\m+6-k=4\end{cases}}\Leftrightarrow2m=1\)loại
5.\(\hept{\begin{cases}m+6+k=6\\m+6-k=6\end{cases}}\Leftrightarrow2m=0\Leftrightarrow m=0\)
\(2y^2-y-3=0\Leftrightarrow\orbr{\begin{cases}y=-1\\y=\frac{3}{2}\end{cases}}\)\(\Rightarrow y=-1\)
thay m=0 có \(\Delta=0\)phương trình ban đầu trở thành
\(3x^2=0\Leftrightarrow x=0\)
vậy cặp (x,y) nguyên là (0,-1)
a, \(x^2+2=2\sqrt{x^2+1}\)
\(\Rightarrow x^2+1-2\sqrt{x^2+1}+1=0\)
\(\Rightarrow\left(\sqrt{x^2+1}-1\right)^2=0\)
\(\Rightarrow\sqrt{x^2+1}-1=0\)\(\Rightarrow x^2+1=1\Rightarrow x=0\)
b,\(x^2+x+2y^2+y=2xy^2+xy+3\)
\(\Rightarrow2xy^2+xy-x^2-x-2y^2-y+3=0\)
\(\Rightarrow2y^2\left(x-1\right)+y\left(x-1\right)-x\left(x-1\right)-2\left(x-1\right)+1=0\)
\(\Rightarrow\left(x-1\right)\left(2y^2+y-x-2\right)=-1=1\cdot\left(-1\right)=\left(-1\right)\cdot1\)
đoạn sau bạn tự giái tiếp nhé
a) \(x^2+2=2\sqrt{x^2+1}\)
\(\Leftrightarrow\left(x^2+2\right)^2=\left(2\sqrt{x^2+1}\right)^2\)
\(\Leftrightarrow x^4+4x^2+4=4x^2+4\)
\(\Leftrightarrow x=0\)
X(y3 + 2y + 1) = 32y
Vì (y3 + 2y + 1; y) = 1 nen 32 \(⋮\)chia hết cho y3 + 2y + 1.
Đến đây tự giải nhé.
ủa bạn cái đoạn \(\left(y^3+2y+1;y\right)=1\) dấu chấm phẩy “;” nghĩa là sao ?
a.
\(\Leftrightarrow x\left(y+1\right)^2=32y\Leftrightarrow x=\dfrac{32y}{\left(y+1\right)^2}\)
Do y và y+1 nguyên tố cùng nhau \(\Rightarrow32⋮\left(y+1\right)^2\)
\(\Rightarrow\left(y+1\right)^2=\left\{4;16\right\}\)
\(\Rightarrow...\)
b.
\(2a^2+a=3b^2+b\Leftrightarrow2\left(a-b\right)\left(a+b\right)+a-b=b^2\)
\(\Leftrightarrow\left(2a+2b+1\right)\left(a-b\right)=b^2\)
Gọi \(d=ƯC\left(2a+2b+1;a-b\right)\)
\(\Rightarrow b^2\) chia hết \(d^2\Rightarrow b⋮d\) (1)
Lại có:
\(\left(2a+2b+1\right)-2\left(a-b\right)⋮d\)
\(\Rightarrow4b+1⋮d\) (2)
(1);(2) \(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow2a+2b+1\) và \(a-b\) nguyên tố cùng nhau
Mà tích của chúng là 1 SCP nên cả 2 số đều phải là SCP (đpcm)
a.
\(\Leftrightarrow2x^2-4x+4y^2=4xy+4\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-4x+4\right)=8\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(x-2\right)^2=8\) (1)
Do \(\left(x-2y\right)^2\ge0;\forall x;y\)
\(\Rightarrow\left(x-2\right)^2\le8\)
\(\Rightarrow\left(x-2\right)^2=\left\{0;1;4\right\}\)
TH1: \(\left(x-2\right)^2\Rightarrow x=2\) thế vào (1)
\(\Rightarrow\left(2-2y\right)^2=8\Rightarrow\left(1-y\right)^2=2\) (ko tồn tại y nguyên t/m do 2 ko phải SCP)
TH2: \(\left(x-2\right)^2=1\Rightarrow\left(x-2y\right)^2=8-1=7\), mà 7 ko phải SCP nên pt ko có nghiệm nguyên
TH3: \(\left(x-2\right)^2=4\Rightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\) thế vào (1):
- Với \(x=0\Rightarrow\left(-2y\right)^2+4=8\Rightarrow y^2=1\Rightarrow y=\pm1\)
- Với \(x=2\Rightarrow\left(2-2y\right)^2+4=8\Rightarrow\left(1-y\right)^2=1\Rightarrow\left[{}\begin{matrix}y=0\\y=2\end{matrix}\right.\)
Vậy pt có các cặp nghiệm là:
\(\left(x;y\right)=\left(0;1\right);\left(0;-1\right);\left(2;0\right);\left(2;2\right)\)
b.
\(\Leftrightarrow2x^2+4y^2+4xy-4x=14\)
\(\Leftrightarrow\left(x^2+4xy+4y^2\right)+\left(x^2-4x+4\right)=18\)
\(\Leftrightarrow\left(x+2y\right)^2+\left(x-2\right)^2=18\) (1)
Lý luận tương tự câu a ta được
\(\left(x-2\right)^2\le18\Rightarrow\left(x-2\right)^2=\left\{0;1;4;9;16\right\}\)
Với \(\left(x-2\right)^2=\left\{0;1;4;16\right\}\) thì \(18-\left(x-2\right)^2\) ko phải SCP nên ko có giá trị nguyên x;y thỏa mãn
Với \(\left(x-2\right)^2=9\Rightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\) thế vào (1)
- Với \(x=5\Rightarrow\left(5+2y\right)^2+9=18\Rightarrow\left(5+2y\right)^2=9\)
\(\Rightarrow\left[{}\begin{matrix}5+2y=3\\5+2y=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=-1\\y=-4\end{matrix}\right.\)
- Với \(x=-1\Rightarrow\left(-1+2y\right)^2=9\Rightarrow\left[{}\begin{matrix}-1+2y=3\\-1+2y=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=2\\y=-1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(5;-1\right);\left(5;-4\right);\left(-1;3\right);\left(-1;-3\right)\)
\(xy^2+2xy+x=32y\)
\(x\left(y+1\right)^2=32y\)
\(\Rightarrow x=\frac{32y}{\left(y+1\right)^2}\)
Vì \(\left(y,\left(y+1\right)^2\right)=1\)và \(x\inℤ\)\(\Rightarrow\left(y+1\right)^2\inƯ\left(32\right)=Ư\left(2^5\right)=\left\{2^2;2^4\right\}\)
\(Khi\left(y+1\right)^2=2^2=4\Rightarrow\orbr{\begin{cases}y+1=2\\y+1=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=1\\y=-3\end{cases}}\)
\(\cdot y=1\Rightarrow x=\frac{32.1}{4}=8\)
\(\cdot y=-3\Rightarrow x=\frac{32.\left(-3\right)}{4}=-24\)
\(Khi\left(y+1\right)^2=2^4=16\Rightarrow\orbr{\begin{cases}y+1=4\\y+1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}y=3\\y=-5\end{cases}}}\)
\(\cdot y=3\Rightarrow x=\frac{32.3}{16}=6\)
\(\cdot y=-5\Rightarrow x=\frac{32.\left(-5\right)}{16}=-10\)
Vậy nghiệm phương trình \(\left(x;y\right)=\left(8;1\right);\left(-24;-3\right);\left(6;3\right);\left(-10;-5\right)\)