Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(\frac{a}{b}\left(a,b\in N,b\ne0\right)\)
\(\frac{a}{b}>\frac{4}{7}\)
\(\Rightarrow7a>4b\)
\(\Leftrightarrow8b< 1994\)
\(\Leftrightarrow b< 249\)
\(7a>4b\)
\(\Leftrightarrow14a>1994\)
\(\Leftrightarrow a>142\)
Có: \(\frac{a}{b}< \frac{2}{3}\)
\(\Rightarrow3a< 2b\)
\(\Leftrightarrow6a+7a< 4b+7a\)
\(\Leftrightarrow13a< 1994\)
\(\Leftrightarrow a< 154\)
Có:\(3a< 2b\)
\(\Leftrightarrow6a+a+4b< 8b+a\)
\(\Leftrightarrow1994< 8b+a\)
mà a=\(\frac{1994-4b}{7}\)
\(8b+a=8b+\frac{1994-4b}{7}>1994\)
\(\Leftrightarrow56b+1994-4b>13958\)
\(\Leftrightarrow b>230\)
Vậy \(\frac{4}{7}< \frac{a}{b}< \frac{2}{3}\Leftrightarrow a,b\in N;142< a< 154;230< b< 249\)
Nguyễn Việt Lâm Bài này có cần tìm cụ thể ko?
Theo đề bài ta có:
\(\hept{\begin{cases}\frac{4}{7}< \frac{a}{b}< \frac{2}{3}\\7a+4b=1994\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}7a>4b\\3a< 2b\\7a+4b=1994\end{cases}}\)
\(\Rightarrow7a+6a< 7a+4a=1994< 7a+7a\)
\(\Rightarrow13a< 1994< 14a\)
\(\Rightarrow142,4< a< 153,3\)
\(\Rightarrow143\le a\le153\)(1)
Mà theo đề thì 7a + 4b = 1994 nên a phải là số chẵn (2)
Từ (1) và (2) ta suy ra a có thể là các giá trị sau: 144; 146; 148; 150; 152.
Thế ngược lại tìm ra b. (Giá trị nào thõa mãn thì nhận)
4/7 < a/b<2/3
quy đồng ,ta có
12/21 <a/b <14/21
a/b =13/21.suy ra a =13b/21
thay a vào 7a +4b =1994 thì không thể có giá trị nguyên cho a và b .Mà a và b chỉ là số thập phân
b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)
Đặt \(x=15k;y=20k;z=24k\)
Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)
\(a,A=\dfrac{-3\left(2n-3\right)-8}{2n-3}=-3-\dfrac{8}{2n-3}\in Z\\ \Leftrightarrow2n-3\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\\ \Leftrightarrow n\in\left\{1;2\right\}\left(n\in Z\right)\)
\(b,\dfrac{ab}{a+2b}=\dfrac{3}{2}\Leftrightarrow\dfrac{a+2b}{ab}=\dfrac{2}{3}\Leftrightarrow\dfrac{1}{b}+\dfrac{2}{a}=\dfrac{2}{3}\\ \dfrac{bc}{b+2c}=\dfrac{4}{3}\Leftrightarrow\dfrac{b+2c}{bc}=\dfrac{3}{4}\Leftrightarrow\dfrac{1}{c}+\dfrac{2}{b}=\dfrac{3}{4}\\ \dfrac{ca}{c+2a}=3\Leftrightarrow\dfrac{c+2a}{ca}=\dfrac{1}{3}\Leftrightarrow\dfrac{1}{a}+\dfrac{2}{c}=\dfrac{1}{3}\)
Cộng vế theo vế \(\Leftrightarrow\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}=\dfrac{2}{3}+\dfrac{3}{4}+\dfrac{1}{3}=\dfrac{7}{4}\)
\(\Leftrightarrow3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{7}{4}\\ \Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{7}{12}\\ \Leftrightarrow\dfrac{ab+bc+ca}{abc}=\dfrac{7}{12}\\ \Leftrightarrow T=\dfrac{12}{7}\)
\(\Leftrightarrow\dfrac{1}{a}=\dfrac{2b-3}{4}\Rightarrow a=\dfrac{4}{2b-3}\left(b\ne\dfrac{3}{2}\right)\) (1)
\(a\in Z\Rightarrow\left(2b-3\right)=\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow b=\left\{-\dfrac{1}{2};\dfrac{1}{2};1;2;\dfrac{5}{2};\dfrac{7}{2}\right\}\) Do \(b\in Z\Rightarrow b=\left\{1;2\right\}\)
Thay vào (1) \(\Rightarrow a=\left\{-4;4\right\}\)
Giả sử tồn tại số nguyên a thỏa mãn đề bài khi đó:
- \(\dfrac{3}{8}\) < - \(\dfrac{3}{5}\) ⇒ \(\dfrac{3}{8}\) > \(\dfrac{3}{5}\) (khi nhân cả hai vế của bất đẳng thức với một số âm thì dấu của bất đẳng thức đổi chiều)
⇒ 8 < 5 (vô lý) hay điều giả sử là sai
Vậy không tồn tại số nguyên nào thỏa mãn đề bài
Kết luận: a \(\in\) \(\varnothing\)
1)Từ đề bài:
`=>a^2+4b+4+b^2+4c+4+c^2+4a+4=0`
`<=>(a+2)^2+(b+2)^2+(c+2)^2=0`
`<=>a=b=c-2`
`ab+bc+ca=abc`
`<=>1/a+1/b+1/c=1`
`<=>(1/a+1/b+1/c)^2=1`
`<=>1/a^2+1/b^2+1/c^2+2/(ab)+2/(bc)+2/(ca)=1`
`<=>1/a^2+1/b^2+1/c^2=1-(2/(ab)+2/(bc)+2/(ca))`
`a+b+c=0`
Chia 2 vế cho `abc`
`=>1/(ab)+1/(bc)+1/(ca)=0`
`=>2/(ab)+2/(bc)+2/(ca)=0`
`=>1/a^2+1/b^2+1/c^2=1-0=1`
a) Đặt \(ƯCLN\left(5a+3,7a+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}5a+3⋮d\\7a+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}35a+21⋮d\\35a+20⋮d\end{matrix}\right.\)
\(\Rightarrow\left(35a+21\right)-\left(35a+20\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(5a+3,7a+4\right)=1\) hay phân số \(\dfrac{5a+3}{7a+4}\) là phân số tối giản. Thế thì phân số này không thể rút gọn cho nguyên nào khác 1.
b) \(A=\dfrac{5a+3}{7a+4}\)
\(A=\dfrac{\dfrac{5}{7}\left(7a+4\right)+\dfrac{1}{7}}{7a+4}\)
\(A=\dfrac{5}{7}+\dfrac{1}{7\left(7a+4\right)}\)
Nếu \(a< 0\) thì \(A< \dfrac{5}{7}\) còn nếu \(a\ge0\) thì \(A>\dfrac{5}{7}\). Do đó ta chỉ cần tìm giá trị lớn nhất của A khi \(a>0\). Để A lớn nhất thì \(7a+4\) nhỏ nhất hay \(a=0\). Vậy để phân số A lớn nhất thì \(a=0\)