Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Theo đề bài ta có:
\(\dfrac{a}{\dfrac{2}{5}}=\dfrac{b}{\dfrac{3}{4}}=\dfrac{c}{\dfrac{1}{6}}\)
\(\Rightarrow\dfrac{a^2}{\sqrt{\dfrac{2}{5}}}=\dfrac{b^2}{\sqrt{\dfrac{3}{4}}}=\dfrac{c^2}{\sqrt{\dfrac{1}{6}}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a^2}{\sqrt{\dfrac{2}{5}}}=\dfrac{b^2}{\sqrt{\dfrac{3}{4}}}=\dfrac{c^2}{\sqrt{\dfrac{1}{6}}}\)
\(=\dfrac{a^2+b^2+c^2}{\sqrt{\dfrac{2}{5}}+\sqrt{\dfrac{3}{4}}+\sqrt{\dfrac{1}{6}}}\)
\(=\dfrac{24309}{1,906...}\)
Đến đây thấy đề sai:v
2) Gọi tuổi của 3 anh em lần lượt là \(a;b;c\)
Theo đề bài ta có:
\(\dfrac{3}{4}a=\dfrac{2}{3}b=\dfrac{1}{2}c\)
\(\Rightarrow\left\{{}\begin{matrix}b=\dfrac{3}{4}a:\dfrac{2}{3}=\dfrac{9}{8}a\\c=\dfrac{3}{4}a:\dfrac{1}{2}=\dfrac{3}{4}a\end{matrix}\right.\)
\(\Rightarrow a+\dfrac{9}{8}a+\dfrac{3}{4}a=58\)
\(\Rightarrow\dfrac{22}{8}a=58\)
\(a=\dfrac{232}{11}\)
cả 2 câu là đề sai hay mk tính sai,chẳng hiểu j
Bài 1:
Ta có:
\(a:b:c=\dfrac{2}{5}:\dfrac{3}{4}:\dfrac{1}{6}\)
\(\Rightarrow\dfrac{a}{\dfrac{2}{5}}=\dfrac{b}{\dfrac{3}{4}}=\dfrac{c}{\dfrac{1}{6}}\Rightarrow\dfrac{a^2}{\dfrac{4}{25}}=\dfrac{b^2}{\dfrac{9}{16}}=\dfrac{c^2}{\dfrac{1}{36}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a^2}{\dfrac{4}{25}}=\dfrac{b^2}{\dfrac{9}{16}}=\dfrac{c^2}{\dfrac{1}{36}}=\dfrac{a^2+b^2+c^2}{\dfrac{4}{25}+\dfrac{9}{16}+\dfrac{1}{36}}\)
\(=\dfrac{24309}{\dfrac{2701}{3600}}=32400\)
\(\Rightarrow\left\{{}\begin{matrix}a^2=5184\\b^2=18225\\c^2=900\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\pm72\\b=\pm135\\c=\pm30\end{matrix}\right.\)
Vậy...........
Chúc bạn học tốt!!!
1
a) Vì \(\dfrac{a}{b}< \dfrac{c}{d}\)
\(\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\)
\(\Rightarrow ad< bc\)
2
b) Ta có : \(\dfrac{-1}{3}=\dfrac{-16}{48};\dfrac{-1}{4}=\dfrac{-12}{48}\)
Ta có dãy sau : \(\dfrac{-16}{48};\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48};\dfrac{-12}{48}\)
Vậy 3 số hữu tỉ xen giữa \(\dfrac{-1}{3}\) và \(\dfrac{-1}{4}\) là :\(\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48}\)
1a ) Ta có : \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)
\(\Leftrightarrow\) \(\dfrac{ad}{bd}\) < \(\dfrac{bc}{bd}\) \(\Rightarrow\) ad < bc
1b ) Như trên
2b) \(\dfrac{-1}{3}\) = \(\dfrac{-16}{48}\) ; \(\dfrac{-1}{4}\) = \(\dfrac{-12}{48}\)
\(\dfrac{-16}{48}\) < \(\dfrac{-15}{48}\) <\(\dfrac{-14}{48}\) < \(\dfrac{-13}{48}\) < \(\dfrac{-12}{48}\)
Vậy 3 số hữu tỉ xen giữa là.................
Câu 2 :
\(x-y=7\)
\(\Rightarrow x=7+y\)
*)
\(B=\dfrac{3\left(7+y\right)-7}{2\left(7+y\right)+y}-\dfrac{3y+7}{2y+7+y}\)
\(=\dfrac{21+3y-7}{14+3y}-\dfrac{3y+7}{3y+7}\)
\(=\dfrac{14y+3y}{14y+3y}-1\)
\(=1-1\)
\(=0\)
Vậy B = 0
2/ Ta có :
\(B=\dfrac{3x-7}{2x+y}-\dfrac{3y+7}{2y+x}\)
\(=\dfrac{3x-\left(x-y\right)}{2x+y}-\dfrac{3y+\left(x-y\right)}{2y+x}\)
\(=\dfrac{3x-x+y}{2y+x}-\dfrac{3y+x-y}{2y+x}\)
\(=\dfrac{2x+y}{2x+y}-\dfrac{2y+x}{2y+x}\)
\(=1-1=0\)
a: \(\dfrac{2}{3}:\left(6x+7\right)=0.2:1\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{2}{3}:\left(6x+7\right)=\dfrac{1}{5}:\dfrac{7}{6}=\dfrac{6}{35}\)
\(\Leftrightarrow6x+7=\dfrac{35}{9}\)
=>6x=-28/9
hay x=-28/54=-14/27
b: \(\dfrac{a}{a+2b}=\dfrac{c}{c+2d}\)
\(\Leftrightarrow a\left(c+2d\right)=c\left(a+2b\right)\)
\(\Leftrightarrow ac+2ad=ac+2bc\)
=>2ad=2bc
=>ad=bc
=>a/b=c/d
Đặt a/b=c/d=k
=>a=bk; c=dk
\(A=\dfrac{a^2\cdot d^2-4b^2\cdot c^2}{abcd}=\dfrac{b^2k^2\cdot d^2-4\cdot b^2\cdot d^2k^2}{bk\cdot b\cdot dk\cdot d}\)
\(=\dfrac{-3b^2k^2d^2}{b^2k^2d^2}=-3\)
4/ \(\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{y}{20}\\\dfrac{y}{20}=\dfrac{z}{24}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}=k\) (đặt k)
Suy ra \(x=15k;y=20k;z=24k\)
Thay vào,ta có:
\(M=\dfrac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)
\(a)3\dfrac{1}{2}.\dfrac{4}{49}-\left[2,\left(4\right):2\dfrac{5}{11}\right]:\left(\dfrac{-42}{5}\right)\)
\(=\dfrac{7}{2}.\dfrac{4}{49}-\dfrac{88}{27}:\left(\dfrac{-42}{7}\right)\)
\(=\dfrac{2}{7}-\dfrac{-220}{567}\)
\(=\dfrac{382}{567}\)
các phần con lại dễ nên bn tự lm đi nhé mk bn lắm
Chúc bạn học tốt!
\(A=17\dfrac{2}{31}-\left(\dfrac{15}{17}+6\dfrac{2}{31}\right)=17\dfrac{2}{31}-\dfrac{15}{17}-6\dfrac{2}{31}\)
\(=11-\dfrac{15}{17}=\dfrac{172}{17}\)
\(B=\left(31\dfrac{6}{13}+5\dfrac{9}{41}\right)-36\dfrac{6}{12}=36\dfrac{363}{533}-36\dfrac{6}{12}=\dfrac{193}{1066}\)
\(C=27\dfrac{51}{59}-\left(7\dfrac{51}{59}-\dfrac{1}{3}\right)=27\dfrac{51}{59}-7\dfrac{51}{59}+\dfrac{1}{3}=20+\dfrac{1}{3}=\dfrac{61}{3}\)
\(A=17\dfrac{2}{31}-\left(\dfrac{15}{17}+6\dfrac{2}{31}\right)=17\dfrac{2}{31}-\dfrac{15}{17}-6\dfrac{2}{31}\)
\(=\left(17\dfrac{2}{31}-6\dfrac{2}{31}\right)-\dfrac{15}{17}=11-\dfrac{15}{17}=\dfrac{172}{17}\)
\(B=\left(31\dfrac{6}{13}+5\dfrac{9}{41}\right)-36\dfrac{6}{12}=36\dfrac{363}{533}-36\dfrac{1}{2}=\dfrac{193}{1066}\) (Casio :>)
\(C=27\dfrac{51}{59}-\left(7\dfrac{51}{59}-\dfrac{1}{3}\right)=27\dfrac{51}{59}-7\dfrac{51}{59}+\dfrac{1}{3}\)
\(=20+\dfrac{1}{3}=\dfrac{61}{3}\)
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...
Bài 1:
Giải:
Ta có: \(\dfrac{4x}{6y}=\dfrac{2x+8}{3y+11}\)
\(\Rightarrow\dfrac{2x}{3y}=\dfrac{2x+8}{3y+11}\)
\(\Rightarrow\left(3y+11\right)2x=\left(2x+8\right)3y\)
\(\Rightarrow6xy+22x=6xy+24y\)
\(\Rightarrow22x=24y\)
\(\Rightarrow\dfrac{x}{y}=\dfrac{24}{22}\)
\(\Rightarrow\dfrac{x}{y}=\dfrac{12}{11}\)
Vậy \(\dfrac{x}{y}=\dfrac{12}{11}.\)
Câu 4:
Giải:
Gọi số h/s lớp 7A, 7B lần lượt là a,b (a,b \(\in N\)*)
Theo bài ra ta có: \(a+b=65\) và \(\dfrac{a}{6}=\dfrac{b}{7}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{6}=\dfrac{b}{7}=\dfrac{a+b}{6+7}=\dfrac{65}{13}=5\)
Khi đó \(\left[{}\begin{matrix}\dfrac{a}{6}=5\\\dfrac{b}{7}=5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a=30\\b=35\end{matrix}\right.\)
Vậy số h/s lớp \(\left[{}\begin{matrix}7A:30\\7B:35\end{matrix}\right.\).
1)Từ đề bài:
`=>a^2+4b+4+b^2+4c+4+c^2+4a+4=0`
`<=>(a+2)^2+(b+2)^2+(c+2)^2=0`
`<=>a=b=c-2`
`ab+bc+ca=abc`
`<=>1/a+1/b+1/c=1`
`<=>(1/a+1/b+1/c)^2=1`
`<=>1/a^2+1/b^2+1/c^2+2/(ab)+2/(bc)+2/(ca)=1`
`<=>1/a^2+1/b^2+1/c^2=1-(2/(ab)+2/(bc)+2/(ca))`
`a+b+c=0`
Chia 2 vế cho `abc`
`=>1/(ab)+1/(bc)+1/(ca)=0`
`=>2/(ab)+2/(bc)+2/(ca)=0`
`=>1/a^2+1/b^2+1/c^2=1-0=1`