Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{x+5}{2x-2}\inℤ\) thì \(\left(x+5\right)⋮\left(2x-2\right)\)
\(\Leftrightarrow\left[2\left(x+5\right)\right]⋮\left(2x-2\right)\)
\(\Leftrightarrow\left[2x+10\right]⋮\left(2x-2\right)\)
\(\Leftrightarrow\left[2x-2+10\right]⋮\left(2x-2\right)\)
Vì \(\left[2x-2\right]⋮\left(2x-2\right)\) nên \(10⋮\left(2x-2\right)\)
\(\Leftrightarrow\left(2x-2\right)\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
ĐKXĐ : \(x\ne1\)
\(\frac{x+5}{2x-2}=\frac{x-1+6}{2\left(x-1\right)}=\frac{2-1}{2\left(x-1\right)}+\frac{6}{2\left(x-1\right)}=\frac{1}{2}+\frac{3}{x-1}\)
\(\Rightarrowđể\frac{x+3}{2x-2}\)có giá trị nguyên thì \(x-1\inƯ\left(3\right)\Rightarrow x-1\in\left\{-1;-1;1;3\right\}\)
vậy để \(\frac{x+5}{2x-2}\)có giá trị nguyên thì \(x\in\left\{-2;0;2;4\right\}\)
\(E=\frac{5-x}{x-2}=\frac{3+2-x}{x-2}=\frac{3-x+2}{x-2}\)\(=\frac{3-\left(x-2\right)}{x-2}=\frac{3}{x-2}-\frac{x-2}{x-2}=\frac{3}{x-2}-1\)
E có giá trị nguyên \(\Leftrightarrow\) \(\frac{3}{x-2}-1\) có giá trị nguyên \(\Leftrightarrow\frac{3}{x-2}\) có giá trị nguyên
\(\Leftrightarrow\) x - 2 \(\in\) Ư(3) \(\Leftrightarrow\) x - 2 \(\in\) {-1 ; 1 ; -3 ; 3}
\(\Leftrightarrow\) x \(\in\) {1 ; 3 ; -1 ; 5}
\(E=\frac{5-x}{x-2}=\frac{3-\left(x-2\right)}{x-2}=\frac{3}{x-2}-1\)
Để A có giá trị nguyên thì \(\frac{3}{x-2}\) phải có giá trị nguyên
=> 3 chia hết cho x-2 => \(x-2\inƯ\left(3\right)\Rightarrow x-2\in\left\{-1;1;-3;3\right\}\Rightarrow x\in\left\{1;3;-1;5\right\}\)
Vậy với x= 1 ; x= 3 ; x= -1 ; x= 5 thì Ecó giá trị nguyên
=>3x+15-55 chia hết cho x+5
=> 3(x+5) -55 chia hết cho x+5
vì 3(x+5) chia hết cho x+5 nên 55 cũng chhia hết cho x+5
=> x+5 là ước của 55
=> x+5={1,-1,5,-5,11,-11,55,-55}
xét x+5 =....( đoạn này bạn tự làm nhé)
b) => 3x-12+4 chia hết cho x-4
=> 3(x-4) +4 chia hết cho x-4
vì 3(x-4) chia hết cho x-4 nên 4 chia hết cho x-4
=> x-4 là ước của 4
=> x-4={-1,1,-2,2,-4,4}
xét x-4=.....(bn xét lần lượt nha^^)
đk: x #1;
P = 1 + 9/x-1.
Vậy x nguyên để x- 1 là ước của 9
Ư của 9 là: -9; -3; -1; 0; 1; 3 và 9
Từ đó tìm được x
a: ĐKXĐ: \(x\notin\left\{4\right\}\)
x2-3x=0
=>x(x-3)=0
=>\(\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Thay x=0 vào A, ta được:
\(A=\dfrac{0-5}{0-4}=\dfrac{-5}{-4}=\dfrac{5}{4}\)
Thay x=3 vào A, ta được:
\(A=\dfrac{3-5}{3-4}=\dfrac{-2}{-1}=\dfrac{2}{1}=2\)
b: \(B=\dfrac{x+5}{2x}-\dfrac{x-6}{5-x}-\dfrac{2x^2-2x-50}{2x^2-10x}\)
\(=\dfrac{x+5}{2x}+\dfrac{x-6}{x-5}-\dfrac{2x^2-2x-50}{2x\left(x-5\right)}\)
\(=\dfrac{\left(x+5\right)\left(x-5\right)+2x\left(x-6\right)-2x^2+2x+50}{2x\left(x-5\right)}\)
\(=\dfrac{x^2-25+2x^2-12x-2x^2+2x+50}{2x\left(x-5\right)}\)
\(=\dfrac{x^2-10x+25}{2x\left(x-5\right)}=\dfrac{\left(x-5\right)^2}{2x\left(x-5\right)}=\dfrac{x-5}{2x}\)
c: Đặt P=A:B
ĐKXĐ: \(x\notin\left\{4;5;0\right\}\)
P=A:B
\(=\dfrac{x-5}{x-4}:\dfrac{x-5}{2x}\)
\(=\dfrac{x-5}{x-4}\cdot\dfrac{2x}{x-5}=\dfrac{2x}{x-4}\)
Để P là số nguyên thì \(2x⋮x-4\)
=>\(2x-8+8⋮x-4\)
=>\(8⋮x-4\)
=>\(x-4\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
=>\(x\in\left\{5;3;6;2;8;0;12;-4\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{3;6;2;8;12;-4\right\}\)
Bài 3: Cho biểu thức A = x - 5/x - 4 và B = x + 5/2x - x - 6/5 - x - 2x² - 2x - 50 / 2 x^2 - 10x t
Ta có x² - 3x = 0 suy ra x x (x - 3) = 0
x = 0; x = 3
Với x = 0 suy ra A = 5/4 v
Với x = 3 suy ra A = 2
Để p đạt giá trị nguyên khi 8/x - 4 cũng phải có giá trị nguyên 28 : (x - 4)
Vậy x - 4 thuộc ước chung của 8 = -8, -4, -1, 1, 4, 8
x - 4 = 8 suy ra x = 4
x - 4 = 4 suy ra 2x = 0 loại
x - 4 = -1 suy ra x = 3 thỏa mãn
x - 4 = 1 suy ra x = 5 loại
x - 4 = 4 - 2x = 8 thỏa mãn
x - 4 = 8 suy ra x = 12 thỏa mãn
a, A=5/x-2
=> x-2 \(\in\)Ư(5)= (-1;1;(-5);5)
Lập bảng rồi tìm giá trị x
Cho T=2017-x/10-x , tìm các giá trị nguyên của x để a, T có giá trị nguyên. b, T có giá trị lớn nhất
a: \(T=\dfrac{2017-x}{10-x}=\dfrac{x-2017}{x-10}\)
Để T nguyên x-10-2007 chia hết cho x-10
=>\(x-10\in\left\{1;-1;3;-3;9;-9;-223;223;669;-669;2007;-2007\right\}\)
=>\(x\in\left\{11;9;13;7;19;1;-213;233;679;-689;2017;-1997\right\}\)
b: Để T lớn nhất thì \(1-\dfrac{2007}{x-10}_{Max}\)
=>2007/x-10 min
=>x-10=2007
=>x=2017
\(x\in\left\{4;6\right\}\)
Thấy đúng k cho tui
Ta có: \(x-4⋮x-5\)
\(\Rightarrow x-5+1⋮x-5\)
\(\Rightarrow1⋮x-5\)
Vì \(x-5\inℤ\) nên \(x-5\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow x\in\left\{4;6\right\}\)