\(E=\frac{5-x}{x-2}\). Tìm các giá trị nguyên của x để E có giá trị nguyên....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2015

\(E=\frac{5-x}{x-2}=\frac{3+2-x}{x-2}=\frac{3-x+2}{x-2}\)\(=\frac{3-\left(x-2\right)}{x-2}=\frac{3}{x-2}-\frac{x-2}{x-2}=\frac{3}{x-2}-1\)

     E có giá trị nguyên \(\Leftrightarrow\) \(\frac{3}{x-2}-1\) có giá trị nguyên \(\Leftrightarrow\frac{3}{x-2}\) có giá trị nguyên 

\(\Leftrightarrow\) x - 2 \(\in\) Ư(3) \(\Leftrightarrow\) x - 2 \(\in\) {-1 ; 1 ; -3 ; 3}

\(\Leftrightarrow\) x \(\in\) {1 ; 3 ; -1 ; 5}

29 tháng 5 2015

\(E=\frac{5-x}{x-2}=\frac{3-\left(x-2\right)}{x-2}=\frac{3}{x-2}-1\)

Để A có giá trị nguyên thì \(\frac{3}{x-2}\) phải có giá trị nguyên

=> 3 chia hết cho x-2 => \(x-2\inƯ\left(3\right)\Rightarrow x-2\in\left\{-1;1;-3;3\right\}\Rightarrow x\in\left\{1;3;-1;5\right\}\)

Vậy với x= 1 ; x= 3 ; x= -1 ; x= 5 thì Ecó giá trị nguyên

1 tháng 6 2015

\(E=\frac{7-x}{x-2}=\frac{5+2-x}{x-2}=\frac{5-x+2}{x-2}=\frac{5-\left(x-2\right)}{x-2}=\frac{5}{x-2}-1\)

 E có giá trị nguyên \(\Leftrightarrow\) \(\frac{5}{x-2}\) có giá trị nguyên \(\Leftrightarrow\) x - 2 \(\in\) Ư(5) \(\Leftrightarrow\) x - 2 \(\in\) {-5 ; -1 ; 1 ; 5}

\(\Leftrightarrow\) x \(\in\) {-3 ; 1 ; 3 ; 7}

7 tháng 7 2016

                                Ta có : 

                     \(E=\frac{5-x}{x-2}=\frac{5-\left(x-2\right)-2}{x-2}=\frac{3-\left(x-2\right)}{x-2}=\frac{3}{x-2}\)\(-1\)

                    \(\Rightarrow x-2\inƯ\left(3\right)\)mà Ư(3) = {-3;-1;1;3} => \(x-2\in\left\{-3;-1;1;\right\}\)

                     \(\Rightarrow x\in\left\{-1;1;3;5\right\}\)

                           Ủng hộ mk nha!!!

7 tháng 7 2016

Để E nguyên thì 5 - x chia hết cho x - 2

Mà x -2 chia hết cho x -2

=> ( 5 - x ) + ( x - 2 )  chia hết cho x -2

=> 3  chia hết cho x -2

=> x -2 thuộc Ư(3) = { -3 ; -1 ; 1 ;3}

=> x thuộc { -1 ; 1 ; 3 ; 5}

28 tháng 10 2019

Biểu thức trên có giá trị nguyên tức là 5x+7 chia hết cho 2x+1 => 2(5x+7) chia hết cho 2x+1

\(\frac{2\left(5x+7\right)}{2x+1}=\frac{10x+14}{2x+1}=\frac{\left(10x+5\right)+9}{2x+1}=\frac{5\left(2x+1\right)+9}{2x+1}=5+\frac{9}{2x+1}.\)

Để biểu thức trên có giá trị nguyên thì 9 phải chia hết cho 2x+1 tức là 2x+1 phải là ước của 9

=> 2x+1={-1;-3;-9; 1; 3; 9} từ các gá trị của 2x+1 sẽ tính được các giá trị của x

22 tháng 3 2016

tớ làm song bài này lâu rôi

22 tháng 3 2016

A =15/x+2 + 14/x+2 = 29/x+2

b) x+2 là U(29) = { -1;1;-29;29}

=> x ={ -3;-1;-31;27}

19 tháng 8 2017

a) \(C=\frac{5}{x-2}\)

=> x-2 thuộc Ư(5) = {-1,-5,1,5}

Ta có bảng :

x-2-1-515
x1-337

Vậy x = {-3,1,3,7}

b) Ta có : \(\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\)

=> x-4 thuộc Ư(9) = {-1,-3,-9,1,3,9}

Ta có bảng :

x-4-1-3-9139
x31-55713

Vậy x = {-5,1,3,5,7,13}

11 tháng 7 2018

Bài 1:Vì \(\left(x+1\right)^{2008}\ge0\) nên \(-\left(x+1\right)^{2008}\le0\)

\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010-0=2010\)

Nên P lớn nhất khi \(P=2010\Rightarrow\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)

Bài 2:Vì 5>0 nên C nhỏ nhất khi \(\left|x\right|-2< 0\) và \(\left|x\right|-2\) lớn nhất

Nên \(\left|x\right|-2=-1\Rightarrow\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

11 tháng 7 2018

\(P=2010-\left(x+1\right)^{2008}\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\)

\(\left[\left(x+1\right)^{1004}\right]^2\ge0\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\le2010\)

Để \(P_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2=0\)

\(\Rightarrow P=2010-0=2010\)

(Dấu"=" xảy ra <=> \(x=-1\)

Bài 2:

Để \(C_{Min}\Rightarrow|x|-2_{Min}\Rightarrow|x|_{Min}\Rightarrow|x|=1\Rightarrow|x|-2=-1\)

\(\Rightarrow C=-5\)

Vì để C Min => /x/ -2 là số nguyễn âm lơn nhất có thể

20 tháng 2 2020

a, để A nguyên

=> 7 - x chia hết cho x - 5

=> 5 - x + 2 chia hết cho x - 5

=> -(x - 5) + 2 chia hết cho x - 5

=> 2 chia hết cho x - 5

=> x - 5 thuộc Ư(2)

=> x - 5 thuộc {-1;1-2;2}

=> x thuộc {4; 6; 3; 7}