Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{2x-1}{2x+3}\) đạt giá trị nguyên
<=> 2x-1 chia hết cho 2x+3
=> (2x+3)-4 chia hết cho 2x+3
Để (2x+3)-4 chia hết cho 2x+3
<=> 2x+3 chia hết cho 2x+3
4 chia hết cho 2x+3
Vì 4 chia hết cho 2x+3 => 2x+3 thuộc Ư(4)={-4;-2;-1;1;2;4}
Ta có bảng sau:
2x+3 | -4 | -2 | -1 | 1 | 2 | 4 |
x | Loại | Loại | -2 | -1 | Loại | Loại |
Vậy các giá trị nguyên n thỏa mãn là: -2;-1
k nha các bạn
Mình có góp ý thế này nhé Trịnh Thị Thúy Vân : Vì 2x + 3 là số lẻ nên ta chỉ xét trường hợp 1 và -1
Biểu thức trên có giá trị nguyên tức là 5x+7 chia hết cho 2x+1 => 2(5x+7) chia hết cho 2x+1
\(\frac{2\left(5x+7\right)}{2x+1}=\frac{10x+14}{2x+1}=\frac{\left(10x+5\right)+9}{2x+1}=\frac{5\left(2x+1\right)+9}{2x+1}=5+\frac{9}{2x+1}.\)
Để biểu thức trên có giá trị nguyên thì 9 phải chia hết cho 2x+1 tức là 2x+1 phải là ước của 9
=> 2x+1={-1;-3;-9; 1; 3; 9} từ các gá trị của 2x+1 sẽ tính được các giá trị của x
Để \(P=\frac{x-1}{x-3}\left(x∈Z ; x ≠0\right)\) nhận giá trị nguyên
=> x - 1 ⋮ x - 3
=> ( x - 3 ) + 2 ⋮ x - 3
Mà x - 3 ⋮ x - 3 ∀ x ∈ Z
=> 2 ⋮ x - 3
=> x - 3 ∈ Ư(2)
Ta có bảng ;
x-3 | -2 | -1 | 1 | 2 |
x | -1 | 2 | 4 | 5 |
\(P=\frac{x-1}{x-3}\) | \(\frac{1}{2}\)( loại ) ( do P nhận giá trị nguyên ) | -1 ( t/m ) | 3 ( t/m ) | 2 ( t/m ) |
Để P nhận giá trị nguyên lớn nhất => P = 3 và x = 4
VÌ ( 3 - x )2 ≥ 0 ∀ x ∈ Z
=> ( 3 - x )2 - 4 ≥ 0 - 4
=> Để A = ( 3 - x )2 - 4 nhận giá trị nhỏ nhất thì A = -4
<=> ( 3 - x )2 = 0
<=> 3 - x = 0
<=> x = 3
Làm khâu rút gọn thôi
\(=\frac{15}{x+2}+\frac{42}{3x+6}\)
\(=\frac{15}{x+2}+\frac{42}{3\left(x+2\right)}\)
\(=\frac{3.15+42}{3\left(x+2\right)}\)
\(=\frac{87}{3\left(x+2\right)}\)
\(=\frac{29}{x+2}\)
Câu b có phải để tử chia hết cho mẫu không nhỉ? Không chắc thôi để ngkh làm
\(E=\frac{7-x}{x-2}=\frac{5+2-x}{x-2}=\frac{5-x+2}{x-2}=\frac{5-\left(x-2\right)}{x-2}=\frac{5}{x-2}-1\)
E có giá trị nguyên \(\Leftrightarrow\) \(\frac{5}{x-2}\) có giá trị nguyên \(\Leftrightarrow\) x - 2 \(\in\) Ư(5) \(\Leftrightarrow\) x - 2 \(\in\) {-5 ; -1 ; 1 ; 5}
\(\Leftrightarrow\) x \(\in\) {-3 ; 1 ; 3 ; 7}
\(E=\frac{5-x}{x-2}=\frac{3+2-x}{x-2}=\frac{3-x+2}{x-2}\)\(=\frac{3-\left(x-2\right)}{x-2}=\frac{3}{x-2}-\frac{x-2}{x-2}=\frac{3}{x-2}-1\)
E có giá trị nguyên \(\Leftrightarrow\) \(\frac{3}{x-2}-1\) có giá trị nguyên \(\Leftrightarrow\frac{3}{x-2}\) có giá trị nguyên
\(\Leftrightarrow\) x - 2 \(\in\) Ư(3) \(\Leftrightarrow\) x - 2 \(\in\) {-1 ; 1 ; -3 ; 3}
\(\Leftrightarrow\) x \(\in\) {1 ; 3 ; -1 ; 5}
\(E=\frac{5-x}{x-2}=\frac{3-\left(x-2\right)}{x-2}=\frac{3}{x-2}-1\)
Để A có giá trị nguyên thì \(\frac{3}{x-2}\) phải có giá trị nguyên
=> 3 chia hết cho x-2 => \(x-2\inƯ\left(3\right)\Rightarrow x-2\in\left\{-1;1;-3;3\right\}\Rightarrow x\in\left\{1;3;-1;5\right\}\)
Vậy với x= 1 ; x= 3 ; x= -1 ; x= 5 thì Ecó giá trị nguyên
\(A=\frac{2x-6}{x-1}\)
\(\Leftrightarrow A=\frac{2x-2-4}{x-1}=2-\frac{4}{x-1}\)
Để \(A\in Z\)thì \(\frac{4}{x-1}\in Z\)
\(\Rightarrow\left(x-1\right)\inƯ_4=\left(\pm1;\pm2;\pm4\right)\)
\(\Rightarrow x=\left\{2;3;5;0;-1;-3\right\}\)
Vậy ..........
đk: x #1;
P = 1 + 9/x-1.
Vậy x nguyên để x- 1 là ước của 9
Ư của 9 là: -9; -3; -1; 0; 1; 3 và 9
Từ đó tìm được x
ủa bạn đây là nơi học tập nhé aỏ à