Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử a > b> c > d
khi đó ta có số tự nhiên lớn nhất là abcd và số tự nhiên nhỏ nhất là dcba
=> abcd + dcba = 11330
suy ra ta có a + d = 10 và b+ c =12
vậy a+b+c+d = 10+12 = 22
\(\overline{ab}.\overline{cc}.\overline{abc}=\overline{abcabc}\) (\(a,b,c\in N;0< a\le9;0\le b\le9\))
\(\Leftrightarrow10a+b+11c+100a+10b+c=100100a+10010b+1001c\)
\(\Leftrightarrow110a+11b+12c-100100a-10010b-1001c\)
\(\Leftrightarrow-99990a-9999b-989c=0\)
Vì \(0< a\le9\) và \(0\le b,c\le9\)
\(\Rightarrow\left\{{}\begin{matrix}-99990a< 0\\-9999b\le0\\-989c\le0\end{matrix}\right.\)
\(\Rightarrow-99990a-999b-989c< 0\)
\(\Rightarrow\left(a;b;c\right)\in\varnothing\)
Vậy không có a,b,c thỏa mãn.
Ta có số có chữ số tận cùng là c nhân với chính nó được số có chữ số tận cùng vẫn là chính nó , điều này xảy ra khi c thuộc 1 hoặc 5
Nếu c = 1 Ta được \(\overline{ab1}=\overline{da1}\)
Từ đó a = b = d thuộc từ 1 đến 9
Nếu c = 5 thì \(\overline{ab5}\times5=\overline{da5}\)
Nếu a > 1 thì chữ số bên phải sẽ là số có 4 chữ số
Do đó a = 1
\(\Rightarrow\overline{1b5}\times5=\overline{d15}\)
\(\Rightarrow\overline{1b5}=\overline{d15}\div5\)
Do \(\overline{d15}\) khi chia cho 5 sẽ được số có chữ số tận cùng là 3 nên điều này không xảy ra
Vậy số có 4 chữ số cần tìm là 1151 2252 3353 4454 5555 6656 7757 8858 9959
Ta có \(\overline{abc}=\overline{bac}+\overline{cab}\) nên \(a>b,a>c\)
Và \(100a+10b+c=100b+10a+c+100c+10a+b\)
\(\Leftrightarrow80a=91b+100c\)
Do \(80a⋮4;100c⋮4\Rightarrow91b⋮4\Rightarrow b⋮4\)
Vậy \(b\in\left\{4;8\right\}\)
Với b = 4, ta có \(80a=364+100c\Leftrightarrow20a=91+25b\)
Vô lý vì \(20a⋮5\) nhưng \(91+25b⋮̸5\)
Với b = 8, ta có \(80a=91.8+100c\Rightarrow20a=182+25c\)
Vô lý vì \(20a⋮5\) nhưng \(182+25b⋮̸5\)
Vậy không có số nào thỏa mãn điều kiện trên.