Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> ab00+cd+99cd=9700 hay abx100+cdx100=9700
=> (ab+cd) x 100 =9700 => ab+cd=97: trở lại bài toán tổng hiệu ta có:
ab=(97+71):2=84 => cd= 84-71=13 hay a=8,b=4,c=1,d=3;
k nha bạn ...
Lời giải:
\(\overline{abcd}=1000a+100b+10c+d\\
=1001a+104b+13c-(a+4b+3c-d)\)
\(=13(77a+8b+c)-(a+4b+3c-d)\)
Ta thấy $13(77a+8b+c)\vdots 13; a+4b+3c-d\vdots 13$
$\Rightarrow \overline{abcd}\vdots 13$
Ta có:
a. bcd . abc = abcabc
=> abcabc = abc . (1000 + 1) = abc . 1001
<=> a . bcd . abc = abc . 1001
<=> a . bcd = 1001
Đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta dễ dàng tìm được a = 7 ( vì từ 1 -> 9 chỉ có 1001 mới chia hết cho 7) từ đó suy ra bcd = 143
Kết luận a = 7 ; b = 1 ; c = 4 ; d = 3 hay abcd = 7143
Do ¯abab¯,¯adad¯ là các số nguyên tố nên b và d là các số lẻ khác 5 (1)
từ (gt) ¯db+c=b2+ddb¯+c=b2+d (2)
\Leftrightarrow 10d+b+c=b2+d10d+b+c=b2+d
\Leftrightarrow 9d+c=b2−b=b(b−1)9d+c=b2−b=b(b−1)
VT lớn hơn hoặc bằng 9 nên từ VP => b>3 mà b lẻ khác 5 nên b chỉ có thể bằng 7 hoặc 9
+Với b = 7 thì 9d+c=42 => 3<d<5 trái với (1)
+Với b= 9 thì 9d +c= 72 => 7 \leq d \leq 8, mà d lẻ nên d = 7
Thay vào (2) ta đc c = 9
Do ¯a9a9¯, ¯a7a7¯ cùng nguyên tố nên a chỉ có thể nhận các giá trị tương ứng 1,2,5,7,8 hoặc 1,3,4,6,9
=> a = 1 và ¯abcdabcd¯ = 1997, thử lại thấy thỏa mãn
chúcbạn học tốt
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
Ta có số có chữ số tận cùng là c nhân với chính nó được số có chữ số tận cùng vẫn là chính nó , điều này xảy ra khi c thuộc 1 hoặc 5
Nếu c = 1 Ta được \(\overline{ab1}=\overline{da1}\)
Từ đó a = b = d thuộc từ 1 đến 9
Nếu c = 5 thì \(\overline{ab5}\times5=\overline{da5}\)
Nếu a > 1 thì chữ số bên phải sẽ là số có 4 chữ số
Do đó a = 1
\(\Rightarrow\overline{1b5}\times5=\overline{d15}\)
\(\Rightarrow\overline{1b5}=\overline{d15}\div5\)
Do \(\overline{d15}\) khi chia cho 5 sẽ được số có chữ số tận cùng là 3 nên điều này không xảy ra
Vậy số có 4 chữ số cần tìm là 1151 2252 3353 4454 5555 6656 7757 8858 9959