Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overline{ab}.\overline{cc}.\overline{abc}=\overline{abcabc}\) (\(a,b,c\in N;0< a\le9;0\le b\le9\))
\(\Leftrightarrow10a+b+11c+100a+10b+c=100100a+10010b+1001c\)
\(\Leftrightarrow110a+11b+12c-100100a-10010b-1001c\)
\(\Leftrightarrow-99990a-9999b-989c=0\)
Vì \(0< a\le9\) và \(0\le b,c\le9\)
\(\Rightarrow\left\{{}\begin{matrix}-99990a< 0\\-9999b\le0\\-989c\le0\end{matrix}\right.\)
\(\Rightarrow-99990a-999b-989c< 0\)
\(\Rightarrow\left(a;b;c\right)\in\varnothing\)
Vậy không có a,b,c thỏa mãn.
Ta có
\(\overline{abb}+25=\overline{cdc}\)
Do \(a\ne c\) => đâu là phép cộng có nhớ đến hàng trăm => \(b\ge7\) để thoả mãn điều kiện trên
+ Với b=7 \(\overline{a77}+25=100.a+77+25=100.a+102=\overline{cdc}\)
100.a là số tròn chục nên kết quả 100.a+102 phải có chữ số tận cùng là 2 => c=2
\(\Rightarrow\overline{a77}+25=100.a+102=\overline{2d2}=202+10.d\)
\(\Rightarrow100a-10.d=100\Rightarrow10.a-d=10\Rightarrow a=1;d=0\)
\(\overline{abbcdc}=177202\) không phải là số chính phương (số chính phương có tận cùng là 0;1;4;5;6;9) nên b=7 loại
+ Với b=8 \(\Rightarrow\overline{a88}+25=100.a+88+25=100.a+113=\overline{cdc}\)
Do 100.a là số tròn chục nên 100.a+113 pcs chữ số tận cùng là 3 => c=3
\(\Rightarrow\overline{a88}+25=100.a+113=\overline{3d3}=303+10.d\)
\(\Rightarrow100.a-10.d=190\Rightarrow10.a-d=19\)
Do 10.a là số tròn chục nên 10.a-d=19 => d=1 => a=2
\(\Rightarrow\overline{abbcdc}=288313\) Không là số chính phương nên b=8 loại
+ Với b=9 \(\Rightarrow\overline{a99}+25=100.a+99+25=100.a+124=\overline{cdc}\)
Do 100.a là số tròn chục => 100.a+124 có chữ số tận cùng là 4 => c=4
\(\Rightarrow\overline{a99}+25=100.a+124=\overline{4d4}=404+10.d\)
\(\Rightarrow100.a-10.d=280\Rightarrow10.a-d=28\)
Lý luận như trên => d=2 => a=3
\(\Rightarrow\overline{abbcdc}=399424=632^2\) nên chọn b=9
Kết luận: a=3; b=9; c=4; d=2
vì a+c =9 nên để tổng abc+cba là số có 3 chử số thì tổng hàng chục b+b <10 nên b<5. vậy tập hợp A có 5 giá trị là 0,1,2,3,4
Có cái nịt
Có cái nịt