Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(a^2+b^2+c^2\ge ab+bc+ac\)
Áp dụng
=> \(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\ge a^2bc+ab^2c+abc^2=abc\left(a+b+c\right)\)
=> \(\frac{1}{a^4+b^4+c^4+abcd}\le\frac{1}{abc\left(a+b+c+d\right)}\)
Khi đó
\(VT\le\frac{1}{a+b+c+d}\left(\frac{1}{abc}+\frac{1}{bcd}+\frac{1}{cda}+\frac{1}{dab}\right)\)
=> \(VT\le\frac{1}{a+b+c+d}.\frac{a+b+c+d}{abcd}=1\)
Dấu bằng xảy ra khi \(a=b=c=d=1\)
Vậy MaxA=1 khi a=b=c=d=1
Đường link : Câu hỏi của Hà Lê - Toán lớp 9 - Học toán với OnlineMath
Ta có : a4 + b4 \(\ge\)2a2b2 ; b4 + c4 \(\ge\)2b2c2 ; a4 + c4 \(\ge\)2a2c2
\(\Rightarrow\)a4 + b4 + c4 \(\ge\)a2b2 + b2c2 + a2c2 ( 1 )
Lại có : a2b2 + b2c2 \(\ge\)2b2ac ; b2c2 + a2c2 \(\ge\)2c2ab ; a2b2 + a2c2 \(\ge\)2a2bc
\(\Rightarrow\)a2b2 + b2c2 + a2c2 \(\ge\)abc ( a + b + c ) ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)a4 + b4 + c4 \(\ge\) abc ( a + b + c )
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1
Tương tự , b4 + c4 + d4 \(\ge\)bcd ( b + c + d ) ; a4 + b4 + d4 \(\ge\)abd ( a + b + d ) ; c4 + d4 + a4 \(\ge\)acd ( a + c + d )
\(\frac{1}{a^4+b^4+c^4+abcd}\le\frac{1}{abc\left(a+b+c\right)+abcd}=\frac{abcd}{abc\left(a+b+c+d\right)}=\frac{d}{a+b+c+d}\)
\(\frac{1}{b^4+c^4+d^4+abcd}\le\frac{a}{a+b+c+d}\); \(\frac{1}{a^4+b^4+d^4+abcd}\le\frac{c}{a+b+c+d}\)
\(\frac{1}{c^4+d^4+a^4+abcd}\le\frac{b}{a+b+c+d}\)
Cộng từng vế theo vế , ta được :
A \(\le\)1 ( đặt A = biểu thức ấy nhé )
Vậy GTLN A = 1 \(\Leftrightarrow\)a = b = c = d = 1
tổng ba góc tứ giác là 360 độ - góc C và góc D ra r áp dụng tổng hiệu mak tính
\(\widehat{D}=\dfrac{3}{2}\widehat{B}=\dfrac{3}{2}.60^0=90^0\)
\(\widehat{D}=\dfrac{4}{3}\widehat{C}\Rightarrow\widehat{C}=\dfrac{3}{4}\widehat{D}=\dfrac{3}{4}.90^0=67,5^0\)
\(\widehat{A}=360^0-\widehat{B}-\widehat{C}-\widehat{D}=360^0-60^0-90^0-67,5^0=142,5^0\)