Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1\)
\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
+)Nếu a+b+c=0\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)
\(\Rightarrow B=\frac{a+b}{a}.\frac{c+a}{c}.\frac{b+c}{b}=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=\frac{-\left(abc\right)}{abc}=-1\)
Nếu \(a+b+ c\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow a+b=2c\)
\(b+ c=2a\)
\(c+a=2b\)
\(\Rightarrow B=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=2.2.2=8\)
Lời giải:
Nếu $a+b+c=0$ thì $\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=-2$ (đúng với ycđb)
Khi đó:
$P=\frac{(a+b)(b+c)(c+a)}{abc}=\frac{(-c)(-a)(-b)}{abc}=\frac{-abc}{abc}=-1$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{a+b+c}=\frac{a+b+c}{a+b+c}=1$
$\Rightarrow a+b=2c; b+c=2a; c+a=2b$
$\Rightarrow 3a=3b=3c=a+b+c$
$\Rightarrow a=b=c$
Khi đó:
$P=\frac{(a+b)(b+c)(c+a)}{abc}=\frac{2a.2b.2c}{abc}=8$
Cho 3 số a;b;c thỏa mãn: a;b;c>0 và (a+b-c) /c=(b+c-a)/a = (c+a-b) / b
Tính M=(1+b/c).(1+a/c).(1+c/b)
b5:tìm x,y,z
cho a,b,c là 3 số thực dương thỏa mãn a+b/c=b+c/a=c+a/b.Hãy tính A=(1+b/a)(1+a/c)(1+c/b)
Ta có :
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+3=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\)
\(=259.15=3885\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=3885-3=3882\)
a) dễ rồi
b) Theo tính chất dãy tỉ số bằng nhau
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\hept{\begin{cases}\frac{a+b}{c}=2\Leftrightarrow a+b=2c\\\frac{b+c}{a}=2\Leftrightarrow b+c=2a\\\frac{a+c}{b}=2\Leftrightarrow a+c=2b\end{cases}}\)
Theo giả thiết có
\(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
\(P=\left(\frac{a+b}{b}\right)\left(\frac{b+c}{c}\right)\left(\frac{a+c}{a}\right)\)
\(P=\frac{2c}{b}.\frac{2a}{c}.\frac{2b}{a}=\frac{8.a.b.c}{a.b.c}=8\)