K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2020

\(Q=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

=> Q + 3 = \(\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\)

\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)

\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)

\(=2015.\frac{1}{5}=403\)\(\text{Vì }\hept{\begin{cases}a+b+c=2015\\\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{5}\end{cases}}\)

Khi đó Q = 3 = 403

=> Q = 400

Vậy Q = 400

8 tháng 11 2015

\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{b+a}=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}-3=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3=2015.\frac{1}{90}-3=19\frac{7}{18}\)

5 tháng 7 2018

a, Đặt \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\Rightarrow x=5k,y=4k,z=3k\)

Ta có: \(P=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}=\frac{4k}{6k}=\frac{2}{3}\)

b, \(Q+3=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\)

\(Q+3=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)

\(Q+3=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)

\(Q+3=2015\cdot\frac{1}{5}=403\)

=>Q=403-3=400

5 tháng 7 2018

a,\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\)

\(\Rightarrow P=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}=\frac{4}{6}=\frac{2}{3}\)

b, \(Q=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(\Rightarrow Q+3=\left(1+\frac{a}{b+c}\right)+\left(1+\frac{b}{c+a}\right)+\left(1+\frac{c}{a+b}\right)\)

\(\Rightarrow Q+3=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)

\(\Rightarrow Q+3=\frac{a+b+c}{b+c+c+a+a+b}=\frac{2015}{5}=403\)

\(\Rightarrow Q=400\)

Vậy Q = 400

9 tháng 3 2016

Cộng 1 vào mỗi phân số của B rồi trừ 3 đi là đd

25 tháng 2 2015

\(S=\frac{2015-\left(a+b\right)}{a+b}+\frac{2015-\left(b+c\right)}{b+c}+\frac{2015-\left(a+c\right)}{a+c}=\frac{2015}{a+b}-\frac{a+b}{a+b}+\frac{2015}{b+c}-\frac{b+c}{b+c}+\frac{2015}{a+c}-\frac{a+c}{a+c}\)

\(S=2015.\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)-3=2015.\frac{1}{10}-3=\frac{1085}{10}\)

20 tháng 9 2019

a) \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{5}\)

\(\Leftrightarrow\frac{2015}{a+b}+\frac{2015}{b+c}+\frac{2015}{c+a}=403\)

\(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=403\)

\(\Leftrightarrow3+\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=403\)

\(\Leftrightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=400\)

20 tháng 9 2019

b) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow\hept{\begin{cases}a=ck\\b=dk\end{cases}}\)

Thay vào rồi c/m nhé

AH
Akai Haruma
Giáo viên
25 tháng 6 2024

Lời giải:

Nếu $a+b+c=0$ thì $\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=-2$ (đúng với ycđb)

Khi đó: 

$P=\frac{(a+b)(b+c)(c+a)}{abc}=\frac{(-c)(-a)(-b)}{abc}=\frac{-abc}{abc}=-1$

Áp dụng tính chất dãy tỉ số bằng nhau:

$\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{a+b+c}=\frac{a+b+c}{a+b+c}=1$

$\Rightarrow a+b=2c; b+c=2a; c+a=2b$

$\Rightarrow 3a=3b=3c=a+b+c$

$\Rightarrow a=b=c$

Khi đó:

$P=\frac{(a+b)(b+c)(c+a)}{abc}=\frac{2a.2b.2c}{abc}=8$

17 tháng 1 2016

lay ong di qua lay ba di lai cho xin may tick

1 tháng 4 2019

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{7}\)

\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=\frac{1}{7}\left(a+b+c\right)\) (nhân a + b +c vào mỗi vế)

\(\Rightarrow3+\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{2009}{7}\)

Suy ra \(S=\frac{2009}{7}-3=284\)