Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
\(\Rightarrow Q=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)
\(\Rightarrow Q=\left(\frac{a+b+c}{b+c}\right)+\left(\frac{a+b+c}{a+c}\right)+\left(\frac{a+b+c}{a+b}\right)-3\)
\(\Rightarrow Q=\left(a+b+c\right).\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-3\)
\(\Rightarrow Q=259.15-3=3882\)
Cộng biểu thức thêm 3 vao mỗi số hạng sau đó dùng tc phân phối nha
Đáp số 3882
a / (b+c) +1+b/(a+c)+1 +c/(a+b) +1-3 =(a+b+c) /(a+b)+(a+b+c)/(a+c)+(a+b+c)/(a+b)-3
=(a+b+c).(1/(b+c)+1/(a+b)+1/(a+c))-3
=259.15-3
=3882
Lời giải:
Nếu $a+b+c=0$ thì $\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=-2$ (đúng với ycđb)
Khi đó:
$P=\frac{(a+b)(b+c)(c+a)}{abc}=\frac{(-c)(-a)(-b)}{abc}=\frac{-abc}{abc}=-1$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{a+b+c}=\frac{a+b+c}{a+b+c}=1$
$\Rightarrow a+b=2c; b+c=2a; c+a=2b$
$\Rightarrow 3a=3b=3c=a+b+c$
$\Rightarrow a=b=c$
Khi đó:
$P=\frac{(a+b)(b+c)(c+a)}{abc}=\frac{2a.2b.2c}{abc}=8$
Ta có :
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+3=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\)
\(=259.15=3885\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=3885-3=3882\)
Cả on ban rat nhieu