Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)A=(1-3+5-7)+(9-11+13-15)+...+(39-41+43-45)-47+49-51
A=-4+(-4)+..+(-4) -47+49-51
A=-48-47+49-51
A=-97
d)D=0
Bài 2:
a)2n+1 chia hết n-5
Có:n-5 chia hết n-5
=>2n-10: hết n-5
Mà 2n+1 ; hết n-5
=>[(2n+1)-(2n-10)]: hết n-5
=>(2n+1-2n+10): hết n-5
=>11:hết n-5
=>n-5 thuộc Ước của 11={-1;1;11;-11}
=>n={4;6;16;-6}
b)tương tự
c)n(n+2) : hết cho n+2
n^2+2n : hết cho n+2
=>n^2+5n-13-(n^2+2n)
=>n^2+5n-13-n^2-2n
=>3n-13:hết cho n+2
n+2 : hết cho n+2
=>3n+6 : hết n+2
mà 3n-13:hetea n+2
=>19 : hết n+2
=>n=-1;17;-21;-3
Bài 3:
x(5+y)-4y=9
x(5+y)-4(y+5)=29
(y+5)(x-4)=29
mình làm điển hình thôi, làm hết chắc "chớt"
Bài 1:
a) A = 1 - 3 + 5 -7 + 9 - 11 + ... +49-51
A = (-2) + (-2) + (-2) + ... + (-2)
A = (-2).13
A = -26
Bài 2:
a) 2n+1 chia hết cho n-5
<=> 2n-10+11 chia hết cho n-5
<=> 2(n-5)+11 chia hết cho n-5
mà 2(n-5) chia hết cho n-5 <=> 11 cũng chia hết cho n-5
<=>\(n-5\inƯ\left(11\right)=\left\{-11;-1;11\right\}\)
<=>\(n\in\left\{-6;4;6;16\right\}\)
\(\dfrac{9}{56}< \dfrac{a}{8}< \dfrac{b}{7}< \dfrac{13}{28}\)
\(\Leftrightarrow\dfrac{9}{56}< \dfrac{7a}{56}< \dfrac{8b}{7}< \dfrac{26}{56}\)
\(\Rightarrow9< 7a< 8b< 26\)
Mà a,b \(\in Z\)
\(\Rightarrow7a;8b\in Z\)
\(\Rightarrow7a\in\left\{14;21\right\}\Leftrightarrow a\in\left\{2;3\right\}\)
\(\Rightarrow8b\in\left\{8;16\right\}\Rightarrow8b\in\left\{1;2\right\}\)
Vậy chỉ có giá trị a = 2; b = 2 thỏa mãn yêu cầu đề bài.
Bn xét từng trương hợ hoăc uy ra vẫn đc nhé tại 7a < 8b
\(\dfrac{9}{56}\) < \(\dfrac{a}{8}\) < \(\dfrac{b}{8}\) < \(\dfrac{13}{28}\) (a; b \(\in\) N)
\(\dfrac{9}{56}\) < \(\dfrac{7a}{56}\) < \(\dfrac{7b}{56}\) < \(\dfrac{26}{56}\)
9 < 7a < 7b < 26
\(\dfrac{9}{7}\) < a < b < \(\dfrac{26}{7}\)
1,286 < a < b < 3,7
vì a < b , a, b \(\in\) N
a = 2; b = 3
\(a)\) Ta có :
\(A=\frac{8n}{4n-3}=\frac{8n-6+6}{4n-3}=\frac{8n-6}{4n-3}+\frac{6}{4n-3}=\frac{2\left(4n-3\right)}{4n-3}+\frac{6}{4n-3}=2+\frac{6}{4n-3}\)
Để A có giá trị nguyên thì \(\frac{6}{4n-3}\) phải có giá trịn nguyên hay \(6⋮\left(4n-3\right)\)\(\Rightarrow\)\(\left(4n-3\right)\inƯ\left(6\right)\)
Mà \(Ư\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
Suy ra :
\(4n-3\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(3\) | \(-3\) | \(6\) | \(-6\) |
\(n\) | \(1\) | \(\frac{1}{2}\) | \(\frac{5}{4}\) | \(\frac{1}{4}\) | \(\frac{3}{2}\) | \(0\) | \(\frac{9}{4}\) | \(\frac{-3}{4}\) |
Vì \(n\inℤ\) nên \(n\left\{0;1\right\}\)
Vậy \(n\in\left\{0;1\right\}\) thì A có giá trị nguyên
Chúc bạn học tốt ~
\(b)\) Ta có :
\(A=\frac{8n}{4n-3}=2+\frac{6}{4n-3}\) ( câu a mình có phân tích rùi )
Để A đạt GTNN thì \(\frac{6}{4n-3}\) phải đạt GTNN hay \(4n-3< 0\) và đạt GTLN
\(\Rightarrow\)\(4n-3=-1\)
\(\Leftrightarrow\)\(4n=2\)
\(\Leftrightarrow\)\(n=\frac{1}{2}\) ( loại vì n là số nguyên )
\(\Rightarrow\)\(4n-3=-2\)
\(\Leftrightarrow\)\(4n=1\)
\(\Leftrightarrow\)\(\frac{1}{4}\)
\(\Rightarrow\)\(4n-3=-3\)
\(\Leftrightarrow\)\(4n=0\)
\(\Leftrightarrow\)\(n=0\)
Suy ra :
\(A=\frac{8n}{4n-3}=\frac{8.0}{4.0-3}=\frac{0}{0-3}=0\)
Vậy \(A_{min}=0\) khi \(n=0\)
Chúc bạn học tốt ~
Để 12/3n - 1 ∈ Z thì 12 ⋮ 3n - 1 => 3n - 1 ∈ Ư ( 12 )
Ư ( 12 ) = { + 1 ; + 2 ; + 3 ; + 4 ; + 6 ; + 12 }
=> 3n - 1 ∈ { + 1 ; + 2 ; + 3 ; + 4 ; + 6 ; + 12 }
=> 3n = { 0 ; 2 ; - 1 ; 3 ; - 2 ; 4 ; - 3 ; 5 ; - 5 ; 7 ; - 11 ; 13 }
=> n = { 0 ; 2/3 ; - 1/3 ; - 2/3 ; 4/3 ; - 1 ; 5/3 ; - 5/3 ; 7/3 ; - 11/3 ; 13/3 }
Vì x ∈ Z nên x { 0 ; - 1 }
Vậy x = { 0 ; - 1 }
Câu b tương tự
a) Ta có:
12/3n - 1 thuộc Z
Nên 12 chia hết cho 3n - 1
3n - 1 thuộc U(12) = {-12 ; -6 ; -4 ; -3 ; -2 ; -1 ; 1 ; 2; 3 ; 4 ; 6 ; 12}
Bạn tự tìm n
b) Phân tích tương tự
A= n+7/n+5 = n+7-2/n+5= 1+ 2/n+5
=> n thuộc Ư của 2={ -1;-2;1-2}
Mà:n+5=-1 => n=-6
n+5=-2 => n=-7
n+5=1 => n=-4
n+5=2 => n=-3
Vậy n= {-7; -6; -4;-3}
a) \(A=\frac{n+5+2}{n+5}=1+\frac{2}{n+5}\)
\(A\in Z<=>\frac{2}{n+5}\in Z<=>n+5\in U\left(2\right)\)
n+5 | 1 | -1 | 2 | -2 |
n | -4 | -6 | -3 | -7 |
Vậy A thuộc Z <=> n =-4;-6;-3;-7
A đạt GTLN <=> n=-3
Ta có: \(\frac{9}{56}<\frac{a}{8}<\frac{b}{7}<\frac{13}{28}\)
=> \(\frac{9}{56}<\frac{7a}{56}<\frac{8b}{56}<\frac{26}{56}\)
Nếu \(a=2\)thì \(b=3\)
Ta có : \(\frac{9}{56}<\frac{a}{8}<\frac{b}{7}<\frac{13}{28}\)
=> \(\frac{9}{56}<\frac{7a}{56}<\frac{8b}{56}<\frac{26}{56}\)
=> \(9<7a<8b<26\)
Vì a, b ∈ Z => 7a, 8b ∈ Z
=> 7a, 8b ∈ { 10 ; 11 ; 12 ; 13 ; 14 ; 15 ; 16 ; 17 ; 18 ; 19 ; 20 ; 21 ; 22 ; 23 ; 24 ; 25 }
=> 7a ∈ { 14 ; 21 } ; 8b ∈ { 16 ; 24 }
- Khi 7a = 14 => a = 2
- Khi 7a = 21 => a = 3
- Khi 8b = 16 => b = 2
- Khi 8b = 24 => b = 3