Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm n nhỏ nhất nha
\(\frac{7}{n+9};\frac{8}{n+10};....;\frac{11}{n+13}\) tối giản
\(\Leftrightarrow\frac{n+9}{7};\frac{n+10}{8};\frac{n+11}{9};....;\frac{n+13}{11}\)tối giản
\(\Leftrightarrow\frac{n+2}{7};\frac{n+2}{8};......;\frac{n+2}{11}\)tối giản
nên n+2 là số nhỏ nhất nguyên tố cùng nhau với 7;8;...;11
nên: n+2 là số nguyên tố lớn nhất lớn hơn 11
=> n+2=13=> n=11
a) Ta có : \(\frac{7}{n+9}=\frac{7}{\left(n+2\right)+7}\).
Để \(\frac{7}{\left(n+2\right)+7}\)tối giản thì 7 và ( n +2 ) nguyên tố cùng nhau
Tương tự ta có : 8 và (n+2) NTCN
9 và(n+2) NTCN
10 và (n+2) NTCN
11 và (n+2) NTCN
Vậy để \(\frac{7}{n+9};\frac{8}{n+10};...\)tối giản thì : n + 2 phải NTCN với 7;8;9;10;11
Mà n nhỏ nhất nên n+2 là SNT nhỏ nhất > 1
Vậy n + 2= 13 => n = 11
1)
a)
\(\frac{-5}{6}.\frac{120}{25}< x< \frac{-7}{15}.\frac{9}{14}\)
\(\frac{-1}{1}.\frac{20}{5}< x< \frac{-1}{5}.\frac{3}{2}\)
\(\frac{-20}{5}< x< \frac{-3}{10}\)
\(\frac{-40}{10}< x< \frac{-3}{10}\)
\(\Rightarrow Z\in\left\{-4;-5;-6;-7;-8;-9;-10;...;-39\right\}\)
\(a,\left(\frac{31}{20}-\frac{26}{45}\right)\cdot\left(\frac{-36}{35}\right)< x< \left(\frac{51}{56}+\frac{8}{21}+\frac{1}{3}\right)\cdot\frac{8}{13}\)
\(taco:\left(\frac{31}{20}-\frac{26}{45}\right)\cdot\left(\frac{-36}{35}\right)=\frac{35}{36}\cdot\frac{-36}{35}=-1\)
\(\left(\frac{51}{56}+\frac{8}{21}+\frac{1}{3}\right)\cdot\frac{8}{13}=\frac{13}{8}\cdot\frac{8}{13}=1\)
\(=>x=0\)
\(b,\frac{-5}{6}+\frac{8}{3}+\frac{29}{-3}< x< \frac{-1}{2}+2+\frac{5}{2}\)(dau <co dau gach ngang o duoi nha)
\(taco:\frac{-5}{6}+\frac{8}{3}+\frac{29}{-3}=\frac{-5}{6}+\frac{8}{3}+\frac{-29}{3}=\frac{-5}{6}+\frac{16}{6}+\frac{-58}{6}=\frac{-47}{6}=-7,8\)
\(\frac{-1}{2}+2+\frac{5}{2}=\frac{3}{2}+\frac{5}{2}=4\)
tu do \(=>x=-7,8;...;0;1;2;3;4\)
Tìm x,y thuộc Z
a,\(\frac{x}{10}-\frac{1}{y}=\frac{13}{10}\)
b,\(\frac{1}{x}+\frac{y}{2}=\frac{5}{8}\)
a ) \(\frac{x}{10}-\frac{1}{y}=\frac{13}{10}\)
\(\frac{1}{y}=\frac{13-x}{10}\)
=> y . ( 13 - x ) = 10 mà z , y thuộc Z
=> y , 13 - x thuộc Ư ( 10 ) = { - 10 ; - 5 ; - 2 ; - 1 ; 1 ; 2 ; 5 ; 10 }
Lập bảng tính giá trị tương ứng x , y :
y | - 10 | - 5 | - 2 | - 1 | 1 | 2 | 5 | 10 |
13 - x | - 1 | - 2 | - 5 | - 10 | 10 | 5 | 2 | 1 |
x | 14 | 15 | 18 | 23 | 3 | 8 | 11 | 12 |
a, \(\left(31\frac{6}{13}+5\frac{9}{41}\right)-36\frac{6}{13}=31\frac{6}{16}+5\frac{9}{41}-36\frac{6}{13}\)
\(=\left(31\frac{6}{16}-31\frac{6}{16}\right)+5\frac{9}{41}\)
\(=0+5\frac{9}{41}=5\frac{9}{41}\)
b, \(\left(17\frac{29}{31}-3\frac{7}{8}\right)-\left(2\frac{28}{31}-4\right)=17\frac{9}{31}-3\frac{7}{8}-2\frac{28}{31}+4\)
1)
a) \(-\frac{8}{15}< \frac{x}{45}< -\frac{2}{5}\)
Lại có: \(-\frac{8}{15}=\frac{-24}{45};-\frac{2}{5}=\frac{-18}{45}\)
=> \(-\frac{24}{45}< \frac{x}{45}< -\frac{18}{45}\)
=> -24 < x < - 18
=> x \(\in\){ - 23; -22; -21; -20 ; -19 } ( thử lại thỏa mãn )
b) \(x=\frac{-4}{3}+\frac{-7}{5}=-\frac{4.5}{3.5}+\frac{-7.3}{5.3}=-\frac{41}{15}\)
c) \(\frac{83}{x}=\frac{13}{4}+\frac{9}{10}=\frac{83}{20}\)
=> x = 20 ( thử lại thỏa mãn)
d) \(x=\frac{10}{8}+\frac{-24}{48}+\frac{105}{-120}=-\frac{1}{8}\)
e) \(\left|x-\frac{1}{2}\right|=\left|-\frac{2}{7}\right|+\frac{5}{4}\)
\(\left|x-\frac{1}{2}\right|=\frac{2}{7}+\frac{5}{4}\)
\(\left|x-\frac{1}{2}\right|=\frac{43}{28}\)
TH1: \(x-\frac{1}{2}=\frac{43}{28}\)
\(x=\frac{57}{28}\)
TH2: \(x-\frac{1}{2}=-\frac{43}{28}\)
\(x=-\frac{29}{28}\)
Ta có: \(\frac{9}{56}<\frac{a}{8}<\frac{b}{7}<\frac{13}{28}\)
=> \(\frac{9}{56}<\frac{7a}{56}<\frac{8b}{56}<\frac{26}{56}\)
Nếu \(a=2\)thì \(b=3\)
Ta có : \(\frac{9}{56}<\frac{a}{8}<\frac{b}{7}<\frac{13}{28}\)
=> \(\frac{9}{56}<\frac{7a}{56}<\frac{8b}{56}<\frac{26}{56}\)
=> \(9<7a<8b<26\)
Vì a, b ∈ Z => 7a, 8b ∈ Z
=> 7a, 8b ∈ { 10 ; 11 ; 12 ; 13 ; 14 ; 15 ; 16 ; 17 ; 18 ; 19 ; 20 ; 21 ; 22 ; 23 ; 24 ; 25 }
=> 7a ∈ { 14 ; 21 } ; 8b ∈ { 16 ; 24 }
- Khi 7a = 14 => a = 2
- Khi 7a = 21 => a = 3
- Khi 8b = 16 => b = 2
- Khi 8b = 24 => b = 3