Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\dfrac{-10}{11}.\dfrac{8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
=\(\dfrac{10}{11}.\dfrac{-8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
=\(\dfrac{10}{11}(\dfrac{-8}{9}+\dfrac{7}{18})\)
=\(\dfrac{10}{11}.\dfrac{-1}{2}\)
=\(\dfrac{-5}{11}\)
b;
B = \(\dfrac{3}{14}\) : \(\dfrac{1}{28}\) - \(\dfrac{13}{21}\): \(\dfrac{1}{28}\) + \(\dfrac{29}{42}\) : \(\dfrac{1}{28}\) - 8
B = (\(\dfrac{3}{14}\) - \(\dfrac{13}{21}\) + \(\dfrac{29}{42}\)) - 8
B = (\(\dfrac{9}{42}\) - \(\dfrac{26}{42}\) + \(\dfrac{29}{42}\)) - 8
B = (\(\dfrac{-17}{42}\) + \(\dfrac{29}{42}\)) - 8
B = \(\dfrac{2}{7}\) - 8
B = \(\dfrac{2}{7}-\dfrac{56}{7}\)
B = - \(\dfrac{54}{7}\)
Mấy bài này bạn tự làm đi, chuyển vế tìm x gần giống cấp I mà.
b)\(\dfrac{-3}{5}.x=\dfrac{1}{4}+0,75\)
=>\(\dfrac{-3}{5}.x=1\)
=>\(x=1:\dfrac{-3}{5}\)
=>\(x=\dfrac{-5}{3}\)
Vậy \(x=\dfrac{-5}{3}\)
Bài 2 :
a, \(x=\dfrac{3}{5}-\dfrac{7}{8}=\dfrac{24-30}{40}=-\dfrac{6}{40}=-\dfrac{3}{20}\)
b, \(2x-1=-2\Leftrightarrow x=-\dfrac{1}{2}\)
A = \(\dfrac{1}{4}.\dfrac{7}{3}.12\)
= \(\dfrac{1.7.12}{4.3}\)
= \(7\)
@Nguyễn Thành Đăng
B = \(\dfrac{3}{8}.56.\dfrac{25}{7}.\left(-4\right)\)
= \(-\dfrac{3.56.25.4}{8.7}\)
= -3.100
= -300
@Nguyễn Thành Đăng
a) Ta có: \(\dfrac{5}{8}+\dfrac{3}{17}+\dfrac{4}{18}+\dfrac{20}{-17}+\dfrac{-2}{9}+\dfrac{21}{56}\)
\(=\left(\dfrac{3}{17}-\dfrac{20}{17}\right)+\left(\dfrac{2}{9}-\dfrac{2}{9}\right)+\left(\dfrac{5}{8}+\dfrac{3}{8}\right)\)
\(=-1+1=0\)
b) Ta có: \(\left(\dfrac{9}{16}+\dfrac{8}{-27}\right)+\left(1+\dfrac{7}{16}+\dfrac{-19}{27}\right)\)
\(=\left(\dfrac{9}{16}+\dfrac{7}{16}\right)+\left(\dfrac{-8}{27}-\dfrac{19}{27}\right)+1\)
=1-1+1=1
a)\(x=\left(\dfrac{3}{56}\cdot\dfrac{28}{9}\right):\dfrac{-3}{7}=\dfrac{1}{6}:\dfrac{-3}{7}=-\dfrac{7}{18}\)
b)\(x=\left(\dfrac{7}{15}\cdot\dfrac{5}{3}\right)+\dfrac{3}{16}=\dfrac{7}{9}+\dfrac{3}{16}=\dfrac{139}{144}\)
1.a) Dễ nhận thấy đề toán chỉ giải được khi đề là tìm x,y. Còn nếu là tìm x ta nhận thấy ngay vô nghiệm. Do đó: Sửa đề: \(\left|x-3\right|+\left|2-y\right|=0\)
\(\Leftrightarrow\left|x-3\right|=\left|2-y\right|=0\)
\(\left|x-3\right|=0\Rightarrow\left\{{}\begin{matrix}x-3=0\\-\left(x-3\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\) (1)
\(\left|2-y\right|=0\Rightarrow\left\{{}\begin{matrix}2-y=0\\-\left(2-y\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\) (2)
Từ (1) và (2) có: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x_1=3\\x_2=-3\end{matrix}\right.\\\left\{{}\begin{matrix}y_1=2\\y_2=-2\end{matrix}\right.\end{matrix}\right.\)
a: \(=\dfrac{3}{4}+\dfrac{9}{5}\cdot\dfrac{2}{3}-1=\dfrac{3}{4}+\dfrac{6}{5}-1=\dfrac{19}{20}\)
b: \(=\dfrac{6}{7}\left(\dfrac{8}{13}+\dfrac{9}{13}-\dfrac{4}{13}\right)=\dfrac{6}{7}\cdot\dfrac{13}{13}=\dfrac{6}{7}\)
Thực hiện phép tính ( tính hợ lí nếu được)
a, \(\dfrac{3}{4}+\dfrac{9}{5}:\dfrac{3}{2}-1\) b, \(\dfrac{6}{7}.\dfrac{8}{13}+\dfrac{6}{13}.\dfrac{9}{7}-\dfrac{4}{13}.\dfrac{6}{7}\)
= \(\dfrac{3}{4}+\dfrac{6}{5}-1\) = \(\dfrac{6}{7}.\left(\dfrac{8}{13}+\dfrac{9}{13}-\dfrac{4}{13}\right)\)
= \(\dfrac{15}{20}+\dfrac{24}{20}-\dfrac{20}{20}\) = \(\dfrac{6}{7}.\left(\dfrac{17}{13}-\dfrac{4}{13}\right)\)
= \(\dfrac{39}{20}-\dfrac{20}{20}\) = \(\dfrac{6}{7}.1\)
= \(\dfrac{19}{20}\) = \(\dfrac{6}{7}\)
quy đồng tát cả lại đi rồi tìm
\(\dfrac{9}{56}< \dfrac{a}{8}< \dfrac{b}{7}< \dfrac{13}{28}\)
\(\Leftrightarrow\dfrac{9}{56}< \dfrac{7a}{56}< \dfrac{8b}{7}< \dfrac{26}{56}\)
\(\Rightarrow9< 7a< 8b< 26\)
Mà a,b \(\in Z\)
\(\Rightarrow7a;8b\in Z\)
\(\Rightarrow7a\in\left\{14;21\right\}\Leftrightarrow a\in\left\{2;3\right\}\)
\(\Rightarrow8b\in\left\{8;16\right\}\Rightarrow8b\in\left\{1;2\right\}\)
Vậy chỉ có giá trị a = 2; b = 2 thỏa mãn yêu cầu đề bài.
Bn xét từng trương hợ hoăc uy ra vẫn đc nhé tại 7a < 8b