Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2-x+4y+5\)
\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+4y+4\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+2\right)^2+\frac{3}{4}\)
\(\ge\frac{3}{4}\)
Dấu "=" xảy ra khi \(x=\frac{1}{2};y=-2\)
\(B=2x^2+4y^2+4xy-3x-1\)
\(=\left(x^2+4xy+4y^2\right)+\left(x^2-3x+\frac{9}{4}\right)-\frac{13}{4}\)
\(=\left(x+2y\right)^2+\left(x-\frac{3}{2}\right)^2-\frac{13}{4}\)
\(\ge-\frac{13}{4}\)
Dấu "=" xảy ra khi \(x=\frac{3}{2};y=-\frac{3}{4}\)
\(f\left(x\right)=-x^2+3x-1=-\left(x^2-2\cdot x\cdot\frac{3}{2}+\frac{9}{4}\right)+\frac{5}{4}\)
\(=-\left(x-\frac{3}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\)
Vậy \(Min_{f\left(x\right)}=\frac{5}{4}\Leftrightarrow x=\frac{3}{2}\)
\(\text{a) }\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\\ =\dfrac{3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}{3}\\ =\dfrac{\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}{3}\\ \\ =\dfrac{\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}{3}\\ =\dfrac{\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)}{3}\\ =\dfrac{\left(2^{16}-1\right)\left(2^{16}+1\right)}{3}\\ =\dfrac{2^{32}-1}{3}\\ \)
\(\text{b) }24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\\ =\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\\ =\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right) \\ =\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\\ =\left(5^{16}-1\right)\left(5^{16}+1\right)\\ =5^{32}-1\\ \)
\(\text{c) }48\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\\ =\left(7^2-1\right)\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\\ =\left(7^4-1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\\ =\left(7^8-1\right)\left(7^8+1\right)\left(7^{16}+1\right)\\ =\left(7^{16}-1\right)\left(7^{16}+1\right)\\ =7^{32}-1\)
\(\left(x-1\right)\left(x+1\right)\left(x+3\right)\)
\(=\left(x^2-1\right)\left(x+3\right)\)
\(=x^3+3x^2-x-3\)
Câu 2:
\(\Leftrightarrow\left(x+2\right)\left(10x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-\dfrac{3}{10}\end{matrix}\right.\)