Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(7^{64}-48\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\left(7^{32}+1\right)\)
\(=7^{64}-\left(7^2-1\right)\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\left(7^{32}+1\right)\)
\(=7^{64}-\left(7^4-1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\left(7^{32}+1\right)\)
\(=7^{64}-\left(7^{64}-1\right)\)
\(=7^{64}-7^{64}+1\)
\(=1.\)
Ít thôi -..-
a) ( 3x + 2 )( 2x + 9 ) - ( x + 3 )( 6x + 1 ) = ( x + 1 )2 - ( x + 2 )( x - 2 )
<=> 6x2 + 31x + 18 - ( 6x2 + 19x + 3 ) = x2 + 2x + 1 - ( x2 - 4 )
<=> 6x2 + 31x + 18 - 6x2 - 19x - 3 = x2 + 2x + 1 - x2 + 4
<=> 12x + 15 = 2x + 5
<=> 12x - 2x = 5 - 15
<=> 10x = -10
<=> x = -1
b) ( 2x + 3 )( x - 4 ) + ( x - 5 )( x - 2 ) = ( 3x - 5 )( x - 4 )
<=> 2x2 - 5x - 12 + x2 - 7x + 10 = 3x2 - 17x + 20
<=> 3x2 - 12x - 2 = 3x2 - 17x + 20
<=> 3x2 - 12x - 3x2 + 17x = 20 + 2
<=> 5x = 22
<=> x = 22/5
c) ( x + 2 )3 - ( x - 2 )3 - 12x( x - 1 ) = -8
<=> x3 + 6x2 + 12x + 8 - ( x3 - 6x2 + 12x - 8 ) - 12x2 + 12x = -8
<=> x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8
<=> 12x + 16 = -8
<=> 12x = -24
<=> x = -2
d) ( 3x - 1 )2 - 5( x + 1 ) + 6x - 3.2x + 1 - ( x - 1 )2 = 16
<=> 9x2 - 6x + 1 - 5x - 5 + 6x - 6x + 1 - ( x2 - 2x + 1 ) = 16
<=> 9x2 - 11x - 3 - x2 + 2x - 1 = 16
<=> 8x2 - 9x - 4 = 16
<=> 8x2 - 9x - 4 - 16 = 0
<=> 8x2 - 9x - 20 = 0
( Đến đây bạn có hai sự lựa chọn : 1 là vô nghiệm
2 là nghiệm vô tỉ =) )
a) (3x + 2)(2x + 9) - (x + 3)(6x + 1) = (x + 1)2 - (x + 2)(x - 2)
=> 3x(2x + 9) + 2(2x + 9) - x(6x + 1) - 3(6x + 1) = x2 + 2x + 1 - x(x - 2) - 2(x - 2)
=> 6x2 + 27x + 4x + 18 - 6x2 - x - 18x - 3 = x2 + 2x + 1 - x2 + 2x - 2x + 4
=> (6x2 - 6x2) + (27x + 4x - x - 18x) + (18 - 3) = (x2 - x2) + (2x + 2x - 2x) + (1 + 4)
=> 12x + 15 = 2x + 5
=> 12x + 15 - 2x - 5 = 0
=> 10x + 10 = 0
=> 10x = -10 => x = -1
b) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4)
=> 2x(x - 4) + 3(x - 4) + x(x - 2) - 5(x - 2) = 3x(x - 4) - 5(x - 4)
=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 = 3x2 - 12x - 5x + 20
=> (2x2 + x2) + (-8x + 3x - 2x - 5x) + (-12 + 10) = 3x2 - 17x + 20
=> 3x2 - 12x - 2 = 3x2 - 17x + 20
=> 3x2 - 12x - 2 - 3x2 + 17x - 20 = 0
=> (3x2 - 3x2) + (-12x + 17x) + (-2 - 20) = 0
=> 5x - 22 = 0
=> 5x = 22 => x = 22/5
c) (x + 2)3 - (x - 2)3 - 12x(x - 1) = -8
=> x3 + 6x2 + 12x + 8 - (x3 - 6x2 + 12x - 8) - 12x2 + 12x = -8
=> x3 + 6x2 + 12x + 8 -x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8
=> (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x + 12x) + (8 + 8) = -8
=> 12x + 16 = -8
=> 12x = -24
=> x = -2
Còn bài cuối làm nốt
talaays đơn thức nhân với từng hạng tử của đa thức
rồi cộng tích lại với nhau
rồi tìm x
nha bn
f: =>35x-5=96-6x
=>41x=101
hay x=101/41
g: =>3(x-3)=90-5(1-2x)
=>3x-9=90-5+10x
=>3x-9=10x+85
=>-7x=94
hay x=-94/7
h.3x - 2/6 - 5 = 3 - 2(x + 7)/4
<=> 3x - 2 - 30/6 = 3 - 2(x + 7)/4
<=> 3x - 32/6 = 3 - 2x - 14/4
<=> 3x - 32/6 = -2x - 11/4
<=> 6x - 64/12 = -6x - 33/12
<=> 6x - 64 = -6x - 33 <=> 12x = 31 <=> x = 31/12
1)
=a^4+2a^2+1-a^2
=(a^2+1)^2-a^2
=(a^2-a+1)(a^2+a+1)
2)
=a^4+4b^4-4a^2b^2
=(a^2+2b^2)^2-4a^2b^2
=(a^2-2ab+2b^2)(a^2+2ab+2b^2)
3)
=(8x^2+1)^2-16x^2
=(8x^2-4x+1)(8x^2+4x+1).
4)
=x^5+x^4+x^3-x^3+1
=x^2(x^2+x+1)-(x-1)(x^2+x+1)
=(x^2-x+1)(x^2+x+1)
5).
=x^7-x+x^2+x+1
=x(x^6-1)+x^2+x+1
=x(x^3-1)(x^3+1)+x^2+x+1
=x(x-1)(x^2+x+1)(x^3+1)+x^2+x+1
=(x^2+x+1)[(x^2-x)(x^3+1)+1]
6)
=x^8-x^2+x^2+x+1
=x^2(x-1)(x^2+x+1)(x^3+1)+x^2+x+1
Xong nhóm x^2+x+1 vào.
7)
=x^4-(2x-1)^2
=(x^2-2x+1)(x^2+2x-1)
8)
=(a^8+b^8)^2-a^8b^8
=(a^8-a^4b^4+b^8)(a^8+a^4b^4+b^8).
\(a,\Leftrightarrow2x^2+10x-2x^2=12\Leftrightarrow x=\dfrac{12}{10}=\dfrac{6}{5}\\ b,\Leftrightarrow\left(5-2x-4\right)\left(5-2x+4\right)=0\\ \Leftrightarrow\left(1-2x\right)\left(9-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\\ c,\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow x=6\\ d,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ e,\Leftrightarrow4x^2-4x+1-4x^2+196=0\\ \Leftrightarrow-4x=-197\Leftrightarrow x=\dfrac{197}{4}\)
\(f,\Leftrightarrow x^2+8x+16-x^2+1=16\Leftrightarrow8x=-1\Leftrightarrow x=-\dfrac{1}{8}\\ g,Sửa:\left(3x+1\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(3x+1-x-1\right)\left(3x+1+x+1\right)=0\\ \Leftrightarrow2x\left(4x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\\ h,\Leftrightarrow x^2+8x-x-8=0\\ \Leftrightarrow\left(x+8\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-8\end{matrix}\right.\\ i,\Leftrightarrow2x^2-13x+15=0\\ \Leftrightarrow2x^2+2x-15x-15=0\\ \Leftrightarrow\left(x+1\right)\left(2x-15\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{15}{2}\end{matrix}\right.\)
1) ta có \(\left(x+y\right)^2=x^2+2xy+y^2.\)
\(=\left(x^2+y^2\right)+2xy\)
\(=20+2.8\)(theo giả thiết x^2+y^2=20 , xy=8)
\(=36\)
Vậy với x^2+y^2=20, xy=8 thì (x+y)^2=36
2) \(M=\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Rightarrow3M=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left[\left(2^2\right)^2-1^2\right]\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left[\left(2^4\right)^2-1^2\right]\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left[\left(2^8\right)^2-1^2\right]\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left(2^{16}\right)^2-1^2\)
\(\Leftrightarrow3M=2^{32}-1\)
\(\Rightarrow M=\frac{2^{32}-1}{3}\)
RÚT GỌN BIỂU THỨC N BẠN LÀM TƯƠNG TỰ NHA
\(N=16\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)
\(\Rightarrow3N=48\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)
\(\Leftrightarrow3N=\left(7^2-1\right)\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)
\(...\)
\(...\)
Kết quả rút gọn \(N=\frac{7^{32}-1}{3}\)
1, a4 + a2 + 1
= a4 + 2a2 + 1 - a2
= (a2)2 + 2a2 + 1 - a2
= (a2 + 1)2 - a2
= (a2 + 1 - a)(a2 + 1 + a)
2, a4 + 4b4
= (a2)2 + 2. a2 . b2 + (2b)2 - a2 . b2
= (a2 + 2b)2 - (ab)2
= (a2 + 2b - ab)(a2 + 2b + ab)
3, 64x4 + 1
= (8x2)2 + 16x2 + 1 - 16x2
= (8x2 + 1)2 - (4x)2
= (8x2 + 1 - 4x)(8x2 + 1 + 4x)
4, x5 + x4 + 1
= x5 + x4 + x3 - x3 - x2 - x + x + x2 + 1
= (x5 + x4 + x3) - (x3 + x2 + x) + (x + x2 + 1)
= x3(x2 + x + 1) - x(x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)(x3 - x + 1)
5, x7 + x2 + 1
= x7 – x + x2 + x + 1
= x(x6 – 1) + (x2 + x + 1)
= x(x3 – 1)(x3 + 1) + (x2 + x + 1)
= x(x3 + 1)(x – 1) (x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)[ x(x3 + 1)(x – 1) + 1]
= (x2 + x + 1)(x5 – x4 + x3 – x2 + x – 1)
6, x8 + x + 1
= x8 + x7 + x6 - x7 - x6 - x5 + x5 + x4 + x3 - x4 - x3 - x2 + x2 + x + 1
= (x8 + x7 + x6) - (x7 + x6 + x5) + (x5 + x4 + x3 ) - (x4 + x3 + x2) + (x2 + x + 1)
= x6(x2 + x + 1) - x5(x2 + x + 1) + x3(x2 + x + 1) - x2(x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)(x6 - x5 + x3 - x2 + 1)
7, x4 - 4x2 + 4x - 1
= x4 - (4x2 - 4x + 1)
= (x2)2 - (2x - 1)2
= (x2 - 2x + 1)(x2 + 2x - 1)
= (x - 1)2 (x2 + 2x - 1)
8, a16 + a8b8 + b16
= (a16 + 2a8b8 + b16) - a8b8
= (a8 + b8)2 - (a4b4)2
= (a8 + b8 - a4b4)(a8 + b8 + a4b4)
= (a8 + b8 - a4b4)[(a8 + b8 + 2a4b4) - a4b4]
= (a8 + b8 - a4b4)[(a4 + b4)2 - (a2b2)2]
= (a8 + b8 - a4b4)(a4 + b4 - a2b2)(a4 + b4 + a2b2)
= (a8 + b8 - a4b4)(a4 + b4 - a2b2)[(a4 + b4 + 2a2b2) - a2b2]
= (a8 + b8 - a4b4)(a4 + b4 - a2b2)[(a2 + b2) - (ab)2]
= (a8 + b8 - a4b4)(a4 + b4 - a2b2)(a2 + b2 - ab)(a2 + b2 + ab)
\(\text{a) }\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\\ =\dfrac{3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}{3}\\ =\dfrac{\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}{3}\\ \\ =\dfrac{\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}{3}\\ =\dfrac{\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)}{3}\\ =\dfrac{\left(2^{16}-1\right)\left(2^{16}+1\right)}{3}\\ =\dfrac{2^{32}-1}{3}\\ \)
\(\text{b) }24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\\ =\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\\ =\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right) \\ =\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\\ =\left(5^{16}-1\right)\left(5^{16}+1\right)\\ =5^{32}-1\\ \)
\(\text{c) }48\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\\ =\left(7^2-1\right)\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\\ =\left(7^4-1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\\ =\left(7^8-1\right)\left(7^8+1\right)\left(7^{16}+1\right)\\ =\left(7^{16}-1\right)\left(7^{16}+1\right)\\ =7^{32}-1\)
Đề là gì vậy bạn?