Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 9:
a. <=> 4x= 12
<=> x=3
S={3}
b. <=> (2x-6).(x+9)=0
<=> 2x-6=0 hoặc x+9=0
<=> x= 3 hoặc x=-9
S={3;-9}
c. <=> 5x=-20
<=> x= -4
S={-4}
d. <=> (2x-6).(3x+9)=0
<=> 2x-6=0 hoặc 3x+9=0
<=> 2x=6 hoặc 3x=-9
<=> x=3 hoặc x= -3
S={3;-3}
e. th1: 2x-3= 6x+5 nếu 2x-3>0 => x>\(\dfrac{3}{2}\)
2x-3=6x+5
<=>2x-6x= 5+3
<=>-4x=8
<=> x= -2 (loại)
th2: 2x-3= -6x+5 nếu 2x-3<0 => x<\(\dfrac{3}{2}\)
2x-3=-6x+5
<=>2x+6x= 5+3
<=>8x=8
<=>x=1 (chọn)
S={1}
f. <=> -12x>6
<=> x< -\(\dfrac{1}{2}\)
S={x/x<-\(\dfrac{1}{2}\)}
g. th1: 2x+3=4x+5 nếu 2x+3>0 => x>\(\dfrac{-3}{2}\)
2x+3=4x+5
2x-4x=5-3
-2x= 2
x= -1 (chọn)
th2: 2x+3=-4x+5 nếu 2x+3<0 => x<\(\dfrac{-3}{2}\)
2x+3=-4x+5
2x+4x= 5-3
6x=2
x= \(\dfrac{1}{3}\)(loại)
S={-1}
h. <=> -2x>-6
<=> x< 3
S={x/x<3}
\(a,\Leftrightarrow x^2-x+2021x-2021=0\\ \Leftrightarrow\left(x-1\right)\left(x+2021\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2021\end{matrix}\right.\\ b,\Leftrightarrow-5x^2+15x+x-3=0\\ \Leftrightarrow\left(x-3\right)\left(1-5x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
b: \(-5x^2+16x-3=0\)
\(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
3x.(x-2)-x2+2x=0
⇔3x2-6x-x2+2x=0
⇔2x2-4x=0
⇔2x(x-2)=0
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
vậy x=0 và x=2
3x(x-2)-x^2+2x=0
<=>3x(x-2)-x(x-2)=0
<=>(3x-x)(x-2)=0
<=>2x(x-2)=0
<=>2x=0 hoặc x-2=0
<=>x=0 hoặc x=2
câu a, \(\dfrac{x}{x+1}\); \(\dfrac{x^2}{1-x}\); \(\dfrac{1}{x^2-1}\) (đk \(x\)≠ -1; 1)
\(x^2\) - 1 = ( \(x\) - 1).(\(x\) + 1)
\(\dfrac{x}{x+1}\) = \(\dfrac{x.\left(x-1\right)}{\left(x+1\right).\left(x-1\right)}\);
\(\dfrac{x^2}{1-x}\) = \(\dfrac{-x^2}{x-1}\)= \(\dfrac{-x^2.\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(\dfrac{1}{x^2-1}\) = \(\dfrac{1}{\left(x-1\right)\left(x+1\right)}\)
b, \(\dfrac{10}{x+2}\); \(\dfrac{5}{2x-4}\); \(\dfrac{1}{6-3x}\) (đk \(x\) ≠ -2; 2)
2\(x-4\) = 2.(\(x\) - 2); 6 - 3\(x\) = - 3.(\(x\) - 2)
\(\dfrac{10}{x+2}\) = \(\dfrac{10.2.3\left(x-2\right)}{2.3\left(x+2\right)\left(x-2\right)}\) = \(\dfrac{60\left(x-2\right)}{6\left(x-2\right)\left(x+2\right)}\)
\(\dfrac{5}{2x-4}\) = \(\dfrac{5.3\left(x+2\right)}{2.3\left(x-2\right).\left(x+2\right)}\) = \(\dfrac{15.\left(x+2\right)}{6.\left(x-2\right)\left(x+2\right)}\)
\(\dfrac{1}{6-3x}\) = \(\dfrac{-1}{3.\left(x-2\right)}\) = \(\dfrac{-1.\left(x+2\right)}{3.2.\left(x-2\right)\left(x+2\right)}\) = \(\dfrac{-2.\left(x+2\right)}{6.\left(x-2\right).\left(x+2\right)}\)
c, \(\dfrac{x}{2x-4}\); \(\dfrac{1}{2x+4}\) và \(\dfrac{3}{4-x^2}\) đk \(x\) ≠ 2; -2
\(\dfrac{x}{2x-4}\) = \(\dfrac{x}{2.\left(x-2\right)}\) = \(\dfrac{x.\left(x+2\right)}{2.\left(x-2\right).\left(x+2\right)}\)
\(\dfrac{1}{2x+4}\) = \(\dfrac{1}{2.\left(x+2\right)}\) = \(\dfrac{\left(x-2\right)}{2.\left(x+2\right).\left(x-2\right)}\)
\(\dfrac{3}{4-x^2}\) = \(\dfrac{-3}{\left(x-2\right)\left(x+2\right)}\) = \(\dfrac{-6}{2.\left(x-2\right)\left(x+2\right)}\)
Ta có:
AE vuông góc BD
CF vuông góc BD
=> AE//CF(1)
Xét 2 tam giác vuông AED và CFB có:
AD=BC
góc ADB = góc CBF ( 2 góc slt)
=> tam giác AED = tam giác CFB (ch-gn)
=> AE= CF (2)
Từ (1) và (2) => AECF là hbh ( đpcm)
Câu 2:
\(\Leftrightarrow\left(x+2\right)\left(10x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-\dfrac{3}{10}\end{matrix}\right.\)