Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) áp dụng định lý Pytago cho tam giác ABC vuông tại A có:
AB2+AC2=BC2
=> \(AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=\sqrt{100-36}=\sqrt{64}=8\left(cm\right)\left(AC>0\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a.\) Ta có: \(\widehat{B}=2\widehat{C}\)suy ra \(\widehat{C}=\frac{\widehat{B}}{2}\) \(\left(1\right)\)
Vì \(BD\)là tia phân giác của \(\widehat{B}\)suy ra \(\widehat{ABD}=\widehat{DBC}=\frac{\widehat{B}}{2}\) \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra \(\widehat{ABD}=\widehat{DBC}=\widehat{C}\)
- Xét \(\Delta ABD\)có \(\widehat{ADB}+\widehat{DBA}+\widehat{BAD}=180^0\)(đ/lý tồng 3 góc trong cùng 1 tam giác)
\(\Rightarrow\)\(\widehat{ADB}+\widehat{BAD}=180^0-\widehat{DBA}\)
- Xét \(\Delta ABC\)có \(\widehat{BAC}+\widehat{ACB}+\widehat{CBA}=180^0\)
\(\Rightarrow\) \(\widehat{BAC}+\widehat{CBA}=180^0-\widehat{ACB}\)
mà \(\widehat{ACB}=\widehat{ABD}\)(cmt) suy ra \(\widehat{BAC}+\widehat{CBA}=\widehat{ADB}+\widehat{BAD}\)
- Xet \(\Delta ABD\)có \(\widehat{ABE}\)là góc ngoài tại đỉnh \(B\)
suy ra \(\widehat{ABE}=\widehat{ADB}+\widehat{BAD}\)
- Xet \(\Delta ABC\)có \(\widehat{ACK}\)là góc ngoài tại đỉnh \(C\)
suy ra \(\widehat{ACK}=\widehat{ABC}+\widehat{BAC}\)
mà \(\widehat{BAC}+\widehat{CBA}=\widehat{ADB}+\widehat{BAD}\) \(\Rightarrow\)đpcm
\(b.\) Xét \(\Delta AEB\)và \(\Delta KCA\) có: \(AB=CK\) ( gt )
\(\widehat{ABE}=\widehat{ACK}\) ( cmt )
\(EB=AC\) ( gt )
Do đó \(\Delta AEB\)\(=\)\(\Delta KCA\) (c.g.c)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét tgiac ABC và ADE có:
+ góc BAC = DAE = 90 độ (góc kề bù)
+ AB = AE
+ AC = AE
=> Tgiac ABC = ADE (c-g-c)
=> DE = BC (2 cạnh t/ứng)
=> đpcm
b) Gọi O là giao điểm của DE và BC
Do tgiac ABC = ADE (cmt) nên góc AED (OEB) = góc ACB
=> góc OEB + góc B = góc B + ACB
Do tgiac ABC vuông tại A nên góc B + ACB = 90 độ (tổng 3 góc trong 1 tgiac là 180 độ)
=> góc OEB + B = 90 độ
Xét tgiac OBE có góc OEB + B = 90 độ => góc EOB = 90 độ
=> DE vuông góc BC (đpcm)
c) 4. góc B = 5. góc C => góc B = 5/4. góc C
Mà tổng góc B + góc C = 90 độ
=> (tổng tỉ) => góc C = 40 độ
=> góc AED = 40 độ
![](https://rs.olm.vn/images/avt/0.png?1311)
tự kẻ hình nha
vì BG=1/3AB => AG=2/3 AB=> G là trọng tâm của tam giác ACE
mà CG giao AB tại G=> CG là trung tuyến và CG giao AE tại K
=> K là trung điểm của AE
Vì B là trung điểm của AE, B là trung điểm DC
=> AE và DC cắt nhau tại trung điểm mỗi đường
=> Tứ giác ACED là hình bình hành
Ta có: \(S_{ACED}=S_{ABC}+S_{BEC}+S_{BDE}+S_{ABD}\)
\(=\frac{1}{2}\cdot AB\cdot BC\cdot\sin\widehat{ABC}+\frac{1}{2}BE\cdot BC\cdot\sin\widehat{EBC}+\frac{1}{2}BE\cdot BD\cdot\sin\widehat{EBD}+\frac{1}{2}BD\cdot BA\cdot\sin\widehat{ABD}\)
\(=8\sqrt{3}\left(cm^2\right)\)