Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H E F 1 2 3 1
CM: Ta có: BE = BH (gt) => t/giác BEH cân tại B => \(\widehat{E}=\widehat{H_1}\)
Do \(\widehat{ABH}\) là góc ngoài của t/giác BHE nên : \(\widehat{ABH}=\widehat{E}+\widehat{H_1}\) => \(\widehat{ABH}=2.\widehat{H_1}\)
Mà \(\widehat{ABH}=2.\widehat{C}\)
=> \(2.\widehat{H_1}=2.\widehat{C}\) => \(\widehat{H_1}=\widehat{C}\)
mà \(\widehat{H_1}=\widehat{H_2}\) (đối đỉnh)
=> \(\widehat{C}=\widehat{H_2}\) => t/giác HFC cân tại F => FH = FC (2)
Ta có: \(\widehat{H_2}+\widehat{H_3}=90^0\) (cùng phụ nhau)
\(\widehat{A_1}+\widehat{C}=90^0\) (t/giác AHC vuông tại H)
Mà \(\widehat{H_2}=\widehat{C}\) (cmt)
=> \(\widehat{A_1}=\widehat{H_3}\) => t/giác AFH cân tại F => AF = FH (2)
Từ (1) và (2) => FH = FA = FC
Bạn tự vẽ hình nha
1. Xét tam giác EBH có: BE=BH (gt) -> tan giác EBH cân tại B -> góc BEH = góc BHE
Ta lại có góc ABH = góc BEH + góc BHE (góc ngoài của tam giác EBH); Mà góc BEH = góc BHE (cmt) -> góc ABH = 2 góc BEH; Mà góc ABH = 2 góc ACB (gt)-> góc BEH = góc ACB ( đpcm)
2. Ta có: góc BHE = góc DHC (2 góc đối đỉnh); Mà góc BHE = góc BEH (cmt) và góc BEH = góc ACB (cmt) => góc DHC = góc ACB -> tam giác DHC cân tại D -> DH = DC ( 2 cạnh tương ứng)
Ta có: tam giác AHC vuông tại H -> góc HAC +góc ACB = 90 độ (2 góc ở đáy tam giác vuông ); Mà góc AHD + góc DHC = 90 độ và góc ACB = góc DHC (cmt) -> góc HAC = góc AHD -> tam giác AHD cân tại D => DA = DH (2 cạnh tương ứng )
Vậy DH=DC=DA
3. Ta có tam giác ABB' có: BH = B'H ( H là trung điểm BB') -> AH là đường trung tuyến lại vừa là đường cao -> tam giác ABB' cân tại A -> góc ABH = góc AB'H (2 góc ở đáy)
Xét tam giác AB'C có: góc AB'H = góc B'AC + góc ACB' (góc ngoài); Mà góc ABH = góc AB'H (cmt) -> góc ABH = góc B'AC + góc ACB ; Mà góc ABH = 2 góc ACB'
-> góc B'AC = góc ACB' => tam giác AB'C cân tại B'
4. Bạn vẽ lại hình nha: giả sử tam giác ABC vuông tại A
Xét tam giác ADE và tam giác ABC có: góc A chung và góc BEH = góc ACB (cmt) -> hai tam giác đồng dạng theo trường hợp (g.g) -> góc ADE = góc ABC (2 góc tương ứng) (1)
Ta có : góc HAD = 90 độ - góc C ( tam giác HAC vuông tại H); Mà góc ABC = 90 độ - góc C ( tam giác ABC vuông tại A) -> góc HAD = góc ABC (2)
Từ (1) và (2) -> góc ADE = góc HAD; Mà góc HAD = góc AHD nên suy ra tam giác AHD đều
Xét tam giác ADE và tâm giác HAC có: góc EAD = góc CHA = 90 độ (gt); góc ADE = góc HAC (cmt); AD = AH (tam giác AHD đều) => tam giác ADE = tam giác HAC theo trường hợp (g.c.g)
=> DE = AC (2 cạnh tương ứng) => DE2 = AC2 ; Mà AC2 = BC2 - AB2 (định lí Py-ta-go trong tam giác ABC) => DE2 = BC2 - AB2 (đpcm)
Học tốt nhé 🙋♀️🙋♀️🙋♀️💗💗💗
a) áp dụng định lý Pytago cho tam giác ABC vuông tại A có:
AB2+AC2=BC2
=> \(AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=\sqrt{100-36}=\sqrt{64}=8\left(cm\right)\left(AC>0\right)\)