Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì B là trung điểm của AE, B là trung điểm DC
=> AE và DC cắt nhau tại trung điểm mỗi đường
=> Tứ giác ACED là hình bình hành
Ta có: \(S_{ACED}=S_{ABC}+S_{BEC}+S_{BDE}+S_{ABD}\)
\(=\frac{1}{2}\cdot AB\cdot BC\cdot\sin\widehat{ABC}+\frac{1}{2}BE\cdot BC\cdot\sin\widehat{EBC}+\frac{1}{2}BE\cdot BD\cdot\sin\widehat{EBD}+\frac{1}{2}BD\cdot BA\cdot\sin\widehat{ABD}\)
\(=8\sqrt{3}\left(cm^2\right)\)
a) Tam giác ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow180^0-\widehat{ABC}=180^0-\widehat{ACB}\)
Hay \(\widehat{ABD}=\widehat{ACE}\)
Theo định lý Cos ta có
\(AD=\sqrt{DB^2+AB^2-2\cdot DB\cdot AB\cdot\cos DBA}\)
\(AE=\sqrt{AC^2+CE^2-2\cdot AC\cdot CE\cdot\cos ACE}\)
Vì AB = AC ( tam giác ABC cân tại A ) và DB =CE và góc DBA = góc ACE
Nên AD = AE hay tam giác ADE cân tại A
b)\(\widehat{ADB}=\widehat{AEC}\)(ADE cân)
Nên góc KCE = góc DBH
Vậy \(\widehat{HBA}=\widehat{KCA}\)( góc DBA = góc ACE)
Xét tam giác HBA và tam giác ACK vuông có :
+ góc HBA = góc KCA
+ AB = AC
\(\Rightarrow\Delta HBA=\Delta KCA\left(ch-gn\right)\)=> HB = KC (hai cạnh tương ứng)
c) Ta có \(180^0=\widehat{HBA}+\widehat{ABC}+\widehat{OBC}\)
\(180^0=\widehat{ACK}+\widehat{ACB+\widehat{OCB}}\)
\(\widehat{HBA}=\widehat{ACK}\)
\(\widehat{ABC}=\widehat{ACB}\)
Nên \(\widehat{OCB}=\widehat{OBC}\)hay tam giâc OBC cân tại O
d) Xét tam giác AMB và tam giác AMC
+ AM chung
+ BM = MC (gt)
+ AB = AC (gt)
Vậy hai tam giác trên bằng nhau theo trường hợp c-c-c
Và hai góc BAM = góc CAM
Hay AM là tia phân giác của góc BAC
Xét tam giác AOB và tam giác ACO
+ AB = AC (gt)
+ OB = OC (cmt )
+ góc ABO = góc ACO vì \(\widehat{ABM+\widehat{OBC}=\widehat{ACM}+\widehat{OCB}}\)
Vậy hai tam giác trên bằng nhau theo trường hợp c-g-c
Và góc BAO = góc CAO
Hay AO là phân giác của góc BAC
Một góc chỉ có duy nhất một tia phân giác nên AM và AO là một hay A,M,O thẳng hàng
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
Sửa câu a thành CM: BM = CM
A B C D E M K
GT | △ABC cân tại A ( BAC = 70o) BAM = MAC = BAC/2 MD ⊥ AB (D AB) ;ME ⊥ AC (E AC) ME = MK |
KL | a, BM = CM b, △DME cân c, DE // BC d, MDK = ? |
Bài giải:
Vì △ABC cân tại A (gt) => AB = AC và ABC = ACB
Xét △BAM và △CAM
Có: AB = AC (cmt)
BAM = MAC (gt)
AM là cạnh chung
=> △BAM = △CAM (c.g.c)
=> BM = CM (2 cạnh tương ứng)
b, Xét △DBM vuông tại D và △ECM vuông tại E
Có: BM = MC (cmt)
DBM = ECM (cmt)
=> △DBM = △ECM (ch-gn)
=> DM = EM (2 cạnh tương ứng)
Xét △DME có: DM = EM (cmt) => △DME cân tại M
c, Vì △DBM = △ECM (cmt)
=> DB = EC (2 cạnh tương ứng))
Ta có: AD + DB = AB
AE + EC = AC
Mà AB = AC (cmt) ; DB = EC (cmt)
=> AD = AE
Xét △ADE có: AD = AE (cmt) => △ADE cân tại A => ADE = (180o - DAE) : 2 (1)
Vì △ABC cân tại A (gt) => ABC = (180o - BAC) : 2 (2)
Từ (1) và (2) => ADE = ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> DE // BC (dhnb)
d, Ta có: ABC = (180o - BAC) : 2 (cmt)
=> ABC = (180o - 70o) : 2 = 110o : 2 = 55o
Mà ABC = ACB (cmt)
=> ACB = 55o
Xét △BMK và △CME
Có: BM = MC (cmt)
BMK = EMC (2 góc đối đỉnh)
MK = ME (gt)
=> △BMK = △CME (c.g.c)
=> MBK = MCE (2 góc tương ứng)
Mà MCE = 55o
=> MBK = 55o
Ta có: DBK = DBM + MBL = 55o + 55o = 110o
Lại có: DMB = EMC (△DBM = △ECM)
Mà EMC = BMK (2 góc đối đỉnh)
=> DMB = BMK
Ta có: MK = ME (gt)
Mà ME = DM (cmt)
=> DM = MK
Xét △BDM và △BKM
Có: BM là cạnh chung
DMB = BMK (cmt)
MD = MK (cmt)
=> △BDM = △BKM (c.g.c)
=> BD = BK (2 cạnh tương ứng)
=> △BDK cân tại B
=> BDK = (180o - KBD) : 2 = (180o - 110o) : 2 = 70o : 2 = 35o
Ta có: BDM + MDA = 180o (2 góc kề bù)
=> BDK + MDK + 90o = 180o
=> BDK + MDK = 90o
=> 35o + MDK = 90o
=> MDK = 55o
Cho tam giác ABC. Lấy D,E trên cạnh AB sao cho AD=DE=EB. vẽ DG và EF song song với BC (F và G thuộc AC)
a, chứng minh: AG=GF=FC
b, giả sử DG=3cm. Tính BC
a: HB=HC=6cm
\(HA=\sqrt{10^2-6^2}=8\left(cm\right)\)
b: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
DO đo: ΔABM=ΔACN
Xét ΔBDM vuông tại D và ΔCEN vuông tại E có
BM=CN
\(\widehat{M}=\widehat{N}\)
Do đó: ΔBDM=ΔCEN
c: Xét ΔKBC có
KH là đường cao
KH là đường trung tuyến
Do đó:ΔKBC cân tại K
=>\(\widehat{KBC}=\widehat{KCB}\)
=>\(\widehat{KCB}=\widehat{DBM}\)
=>\(\widehat{KCB}=\widehat{ECN}\)
=>\(\widehat{KCB}+\widehat{BCE}=180^0\)
=>K,E,C thẳng hàng
a) áp dụng định lý Pytago cho tam giác ABC vuông tại A có:
AB2+AC2=BC2
=> \(AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=\sqrt{100-36}=\sqrt{64}=8\left(cm\right)\left(AC>0\right)\)