Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong tia đối của tia HB và ED lấy điểm K và I sao cho : \(HK=EI\)
Theo tính chất cạnh đối diện với góc , chứng minh được \(KE< KC\)
Ta dễ dàng chứng minh được \(\Delta KHE=\Delta IEH\)(c-g-c)
Suy ra \(KE=IH\)\(< =>IH< KC\)
Đến đây mình chịu rồi
VÌ CẬU NÓI CÂU a) VÀ CÂU b) cậu làm đc r nên mk sẽ k giải phần đấy. Mk sẽ giải nguyên phần c) thôi
Làm
Từ E kẻ EK vuông góc với BC tại K
vì DH vuông góc với AC
ED vuông góc AE hay ED vuông góc với AC=> BH // ED
=> góc HBE = BED ( so le trong ) (1)
mặt khác BD = DE theo câu a
=> tam giác BDE cân tại D => góc EBD = BED (2)
Từ 1 , 2 suy ra góc HBE = EBK
Xét 2 TG vuông BHE và BKE có
HE là cạnh chung
góc HBE = EBK (theo cmt )
Do đó : tam giác BHE = BKE ( ch_gnh )
=> EH = EK
Trong tam giác EKC có EC là cạnh huyền
=> EC > EK => EC > EH
HỌC TỐT Ạ
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
\(MH\perp AB\left(gt\right)\Rightarrow\widehat{MHA}=\widehat{MHB}=90^0\)
\(MK\perp AC\left(gt\right)\Rightarrow\widehat{MKA}=\widehat{MKC}=90^0\)
M là trung điểm của BC (gt) nên MB = MC
AM là tia phân giác của góc A (gt) \(\Rightarrow\widehat{BAM}=\widehat{CAM}\Rightarrow\widehat{HAM}=\widehat{KAM}\)
\(\Delta AHM=\Delta AKM\left(ch-gn\right)\Rightarrow HM=KM\) (2 cạnh tương ứng)
\(\Delta HMB=\Delta KMC\left(ch-cgv\right)\Rightarrow\widehat{B}=\widehat{C}\) ( 2 góc t/ứ)
a)Vì AM là đường trung tuyến ứng với cạnh huyền của vuông tại A nên
cùng cân tại M
vừa là đường cao, vừa là đường phân giác trong .
Chứng minh tương tự có:
b) Từ các chứng minh trên ta suy ra: đpcm
bẠN kham khỏa nhé.
Cm: Xét t/giác ABH và t/giác ACH
có góc B = góc C (vì t/giác ABC cân tại A)
AB = AC (gt)
góc AHB = góc AHC = 900 (gt)
=> t/giác ABH = t/giác ACH (ch - gn)
=> HB = HC (hai cạnh tương ứng)
=> góc BAH = góc CAH (hai góc tương ứng)
b) Ta có: HB = HC = AB/2 = 8/2 = 4 (cm)
Áp dụng định lí Py - ta - go vào t/giác ABH vuông tại H, ta có:
AB2 = HB2 + AH2
=> AH2 = 52 - 42 = 25 - 16 = 9
=> AH = 3
Vậy AH = 3 cm
c) Xem lại đề
Hai tam giác vuông BID và BIE có:
BI là cạnh chung
B1=B2(gt)
nên ∆BID=∆BIE.
(cạnh huyền - góc nhọn)
Suy ra ID=IE (1)
Tương tự ∆CIE=CIF(cạnh huyền góc nhọn).
Suy ra: IE =IF (2)
Từ (1)(2) suy ra: ID=IE=IF.