Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
góc ABE=góc HBE
Do đo: ΔABE=ΔHBE
b: Ta có:BA=BH
EA=EH
Do đó:BE là đường trung trực của AH
c: Ta có: EA=EH
mà EH<EC
nên EA<EC
A B C E K H
a, Xét t/g ABE và t/g KBE có:
góc BAE = góc BKE = 90 độ
BE chung
góc ABE = góc KBE (gt)
=> t/g ABE = t/g KBE (ch-gn)
b, Do t/g ABE = t/g KBE (cm câu a)
=> góc AEB = góc KEB (2 góc tương ứng)
=> BE là phân giác của góc AEK
c, Xét tg vuông ABC có: góc ABC + góc C = 90 độ
=> góc ABC = 90 độ - góc C = 60 độ
=> góc ABE = góc EBC = góc ABC/2 = 30 độ
Xét tg BEC có góc BCE = góc EBC = 30 độ
=> tg BEC cân tại E
d, tg BEC cân tại E có EK là đường cao
=> EK cũng là đường trung tuyến
=> KB = KC
Xét tg BHC vuông tại H có: HK là đường trung tuyến
=> HK = 1/2 BC = KB = KC
Hay KH = KC (đpcm)
P/s: Trong 1 tam giác vuông bất kỳ, đường trung tuyến ứng với cạnh huyền của tam giác sẽ có độ dài bằng 1/2 cạnh huyền
a) ΔABD=ΔEBDΔABD=ΔEBD
b) AH//DE;ΔADIAH//DE;ΔADI cân
c) AE là tia phân giác của ˆHACHAC^
d) DC = 2AI
Giải thích các bước giải:
a) BD là phân giác của ˆABCABC^
⇒ˆABD=ˆEBD⇒ABD^=EBD^
Xét ΔABDΔABD và ΔEBDΔEBD có:
ˆBAD=ˆBED=900BAD^=BED^=900
BD chung
ˆABD=ˆEBDABD^=EBD^ (cmt)
⇒ΔABD=ΔEBD⇒ΔABD=ΔEBD (cạnh huyền - góc nhọn) (*)
b) AH⊥BC;DE⊥BCAH⊥BC;DE⊥BC
⇒AH//ED⇒AH//ED
⇒ˆAID=ˆIDE⇒AID^=IDE^
Từ (*)⇒ˆADI=ˆIDE⇒ADI^=IDE^
⇒ˆAID=ˆADI⇒AID^=ADI^
⇒ΔAID⇒ΔAID cân tại A
c) Từ (*)⇒AB=BE⇒AB=BE (hai cạnh tương ứng)
⇒ΔABE⇒ΔABE cân tại B
AE∩BD=KAE∩BD=K
⇒BK⇒BK vừa là phân giác vừa là đường cao
⇒BK⊥AE⇒BK⊥AE
Xét ΔAIDΔAID cân tại A có AK⊥IDAK⊥ID
⇒AK⇒AK vừa là đường cao vừa là đường phân giác
⇒AE⇒AE là tia phân giác ˆHACHAC^
d) ΔAIDΔAID cân tại A
⇒AI=AD⇒AI=AD
BD là phân giác của ˆABCABC^
⇒ABAC=ADDC=AIDC⇒ABAC=ADDC=AIDC
Để DC=2AI thì AIDC=ABAC=12⇒AC=2ABAIDC=ABAC=12⇒AC=2AB
hình Imgur: Sự kỳ diệu của Internet : https://imgur.com/a/OpRrWs8
a) nhìn hình cũng đủ thấy \(\Delta ABC>\Delta ACH\)
hai tam giác không tương ứng
\(\Delta ACH=\frac{1}{2}\Delta ABC\)
thực chất mình cũng không biết cách cm nó k bằng nhau :3
b) Vì H là tia phân giác của \(\widehat{BAC}\)
\(\Rightarrow\Delta ABH=\Delta ACH\left(c.g.c\right)\)
\(\widehat{H_1}=\widehat{H_2}\)( 2 góc kề bù mà H là tia phân giác )
\(\Rightarrow\widehat{H_1}+\widehat{H_2}=180^o\)
\(\Rightarrow2H_1=\frac{180^o}{2}=90^o\)
\(\Rightarrow AH\perp BC\)(1)
c) gọi I là trung điểm của cạnh DE
cm giống như trên
\(\Rightarrow AI\perp DE\)(2)
Từ (1) và (2) ta có :
\(\Rightarrow\hept{\begin{cases}AH\perp BC\\AI\perp DE\end{cases}}\)
=> DE // BC
\(I\in AH\)nên vẫn có thể cm theo kiểu đó maybe ....
không chắc đâu:)