Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) . Xét\(\Delta ABE\) và \(\Delta ADE\) có:
BA = DA (gt)
Góc BAE = góc DAE ( gt)
AE cạnh chung
nên \(\Delta ADE\) = \(\Delta ABE\)( c-g-c)
b) Ta có :\(\widehat{ABI}+\widehat{AIB}+\widehat{BAI}\)= \(^{180^o}\)
Suy ra : \(\widehat{AIB}\) = \(180^o\)- \(\widehat{ABI}-\widehat{BAI}\)
\(\widehat{AID}+\widehat{DAI}+\widehat{IDA}\)=\(^{180^o}\)
Suy ra: \(\widehat{AID}\) = \(180^O\) - \(\widehat{ADI}\)-\(\widehat{IAD}\)
Mà \(\widehat{BAI}=\widehat{IAD}\left(gt\right)\)
\(\widehat{ABI}=\widehat{ADI}\)(\(\Delta ABD\)cân tại A)
\(\Rightarrow\)\(\widehat{AID}=\widehat{AIB}\)
Ta có: \(\widehat{AID}+\widehat{AIB}=180^o\)( 2 GÓC KỀ BÙ )
MÀ \(\widehat{AID}=\widehat{AIB}\)( CHỨNG MINH TRÊN )
NÊN \(\widehat{AIB}=\widehat{AIB}=\frac{180^O}{2}=90^O\)
HAY \(AE\perp BD\)
Hình bạn tự vẽ nhé!
Giải:
Vì D là trung điểm của AC (gt)
nên AD = CD
Xét \(\Delta ABD\) và \(\Delta CED\) có:
AD = CD (chứng minh trên)
\(\widehat{ADB}=\widehat{CDE}\)(2 góc đối đỉnh)
ED = BD (gt)
\(\Rightarrow\Delta ABD=\Delta CED\) (c.g.c) (1)
\(\Rightarrow\widehat{ABD}=\widehat{CED}\) (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow\)AB // CD (dấu hiệu nhận biết) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
b) Ta có: AF _|_ BD tại F
CG _|_ DE tại G
\(\Rightarrow\hept{\begin{cases}\widehat{AFD}=90^o\\\widehat{CGD}=90^o\end{cases}}\Rightarrow\widehat{AFD}=\widehat{CGD}\)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow\) AF // CG (dấu hiệu nhận biết) (3)
\(\Rightarrow\widehat{FAH}=\widehat{DCG}\) (2 góc so le trong)
Xét \(\Delta ADF\) và \(\Delta CDG\) có:
AD = CD (chứng minh trên)
\(\widehat{ADF}=\widehat{CDG}\) (2 góc đối đỉnh)
\(\widehat{FAH}=\widehat{DCG}\) (chứng minh trên)
\(\Rightarrow\Delta ADF=\Delta CDG\) (g.c.g)
\(\Rightarrow\) DF = DG (2 cạnh tương ứng) (4)
Từ (3), (4) \(\Rightarrowđpcm\)
c) Xét \(\Delta CDE\) có:
Giao điểm 2 đường thẳng CG và EI là M
CG, EI đều là đường cao của \(\Delta CDE\)
\(\Rightarrow\)DM cũng là đường cao của \(\Delta CDE\)
\(\Rightarrow DM\perp AB\)(5)
Xét \(\Delta ABD\) có:
Giao điểm 2 đường thẳng CG, EI là M
AF, BH đều là đường cao của \(\Delta ABD\)
\(\Rightarrow DK\) cũng là đường cao của \(\Delta ABD\)
\(\Rightarrow DK\perp AB\) (6)
Từ (5), (6) suy ra đpcm
a) Xét \(\Delta ABC\) có:
\(AB=AC\left(gt\right)\)
=> \(\Delta ABC\) cân tại A.
=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân).
b) Ta có: \(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
Mà \(\widehat{ECK}=\widehat{ACB}\) (vì 2 góc đối đỉnh).
=> \(\widehat{ABC}=\widehat{ECK}.\)
Hay \(\widehat{DBH}=\widehat{ECK}.\)
Xét 2 \(\Delta\) vuông \(DBH\) và \(ECK\) có:
\(\widehat{DHB}=\widehat{EKC}=90^0\left(gt\right)\)
\(DB=EC\left(gt\right)\)
\(\widehat{DBH}=\widehat{ECK}\left(cmt\right)\)
=> \(\Delta DBH=\Delta ECK\) (cạnh huyền - góc nhọn).
=> \(DH=EK\) (2 cạnh tương ứng).
c) Xét 2 \(\Delta\) vuông \(DHI\) và \(EKI\) có:
\(\widehat{DHI}=\widehat{EKI}=90^0\)
\(DH=EK\left(cmt\right)\)
\(\widehat{DIH}=\widehat{EIK}\) (vì 2 góc đối đỉnh)
=> \(\Delta DHI=\Delta EKI\) (cạnh góc vuông - góc nhọn kề).
=> \(DI=EI\) (2 cạnh tương ứng).
=> \(I\) là trung điểm của \(DE\left(đpcm\right).\)
Chúc bạn học tốt!
Bài 1:
a) Sai đề rồi bạn, đáng lý ra phải là AB=AF mới đúng
Xét ΔABE vuông tại E(AD⊥BE) và ΔAFE vuông tại E(AD⊥BE,F∈BE) có
AE chung
\(\widehat{BAE}=\widehat{FAE}\)(do AE là tia phân giác của góc A)
Do đó: ΔABE=ΔAFE(cạnh góc vuông, góc nhọn kề)
⇒AB=AF(hai cạnh tương ứng)
b) Xin lỗi bạn, mình chỉ biết làm theo cách lớp 8 thôi nhé
Xét tứ giác HFKD có HF//DK(do HF//BC,D∈BC) và HF=DK(gt)
nên HFKD là hình bình hành(dấu hiệu nhận biết hình bình hành)
⇒HD//KF và HD=KF(hai cạnh đối trong hình bình hành HFKD)
c)
Xét ΔABC có AB<AC(gt)
mà góc đối diện với cạnh AB là góc C
và góc đối diện với cạnh AC là góc B
nên \(\widehat{C}< \widehat{B}\)(định lí về quan hệ giữa cạnh và góc đối diện trong tam giác)
hay \(\widehat{ABC}>\widehat{C}\)(đpcm)
tự kẻ hình nha
vì BG=1/3AB => AG=2/3 AB=> G là trọng tâm của tam giác ACE
mà CG giao AB tại G=> CG là trung tuyến và CG giao AE tại K
=> K là trung điểm của AE