Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(-4\le x\le6\)
Do \(\sqrt{\left(x+4\right)\left(6-x\right)}\ge0\Rightarrow2\left(x+1\right)\ge0\Rightarrow x\ge-1\)
Khi đó, bình phương 2 vế ta được:
\(\left(x+4\right)\left(6-x\right)\le4\left(x+1\right)^2\)
\(\Rightarrow-x^2+2x+24\le4x^2+8x+4\)
\(\Rightarrow5x^2+6x-20\ge0\) \(\Rightarrow\left[{}\begin{matrix}x\le\frac{-3-\sqrt{109}}{5}\\x\ge\frac{-3+\sqrt{109}}{5}\end{matrix}\right.\)
Kết hợp điều kiện \(-4\le x\le6\) và \(-1\le x\) ta được: \(\frac{-3+\sqrt{109}}{5}\le x\le6\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=5\end{matrix}\right.\) \(\Rightarrow2a+3b=21\)
a/ ĐKXĐ: ....
\(VT=\sqrt{11+x}+\sqrt{1-x}\ge\sqrt{11+x+1-x}=\sqrt{12}\)
\(VP=2-\frac{x^2}{4}\le2< \sqrt{12}\)
\(\Rightarrow VP< VT\Rightarrow\) BPT vô nghiệm
b/
ĐKXĐ: ...
- Với \(x\le0\Rightarrow VT\le0< VP\Rightarrow\) BPT vô nghiệm
- Với \(x>0\) \(\Rightarrow x>2\) hai vế đều dương, bình phương:
\(x^2+\frac{4x^2}{x^2-4}+\frac{4x^2}{\sqrt{x^2-4}}>45\)
\(\Leftrightarrow\frac{x^4}{x^2-4}+\frac{4x^2}{\sqrt{x^2-4}}-45>0\)
Đặt \(\frac{x^2}{\sqrt{x^2-4}}=t>0\)
\(\Rightarrow t^2+4t-45>0\Rightarrow\left[{}\begin{matrix}t< -9\left(l\right)\\t>5\end{matrix}\right.\)
\(\Rightarrow\frac{x^2}{\sqrt{x^2-4}}>5\Leftrightarrow x^4>25\left(x^2-4\right)\)
\(\Leftrightarrow x^4-25x^2+100>0\Rightarrow\left[{}\begin{matrix}x^2< 5\\x^2>20\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2< x< \sqrt{5}\\x>2\sqrt{5}\end{matrix}\right.\)
c/
ĐKXĐ: \(-2\le x\le2\)
Do \(-2\le x\le2\Rightarrow x+2\ge0\Rightarrow VT\ge0\) \(\forall x\)
Mà \(VP=-2x-8=-2\left(x+2\right)-4\le-4< 0\)
\(\Rightarrow VP< VT\)
Vậy BPT đã cho vô nghiệm
ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\) ; \(x\ne-5\)
- Với \(x=\pm3\) thỏa mãn
- Với \(x\ne\pm3\)
\(\Leftrightarrow\frac{3x-1}{x+5}\le x\Leftrightarrow x-\frac{3x-1}{x+5}\ge0\)
\(\Leftrightarrow\frac{x^2+2x+1}{x+5}\ge0\Leftrightarrow\frac{\left(x+1\right)^2}{x+5}\ge0\)
\(\Rightarrow x>-5\)
Vậy nghiệm của BPT trên \(\left[-5;5\right]\) là: \(\left[{}\begin{matrix}-5< x\le-3\\3\le x\le5\end{matrix}\right.\)
Tính tổng nghiệm hay tổng nghiệm nguyên?
Tổng nghiệm là \(\sum x=5\)
ĐKXĐ: \(\left\{{}\begin{matrix}x>-2\\x\ne2\end{matrix}\right.\)
BPT tương đương:
\(\sqrt{x+2}\ge1\Leftrightarrow x\ge-1\)
Số nghiệm nguyên: \(2020+1=2021\)
ĐK: \(x\ge\frac{2}{3}\)
\(\left(\sqrt{3x-2}-1\right)\sqrt{x^2+1}< 0\)
<=> \(\sqrt{3x-2}-1< 0\)
<=> \(\sqrt{3x-2}< 1\)
<=> 3x - 2 < 1
<=> x < 1
Đối chiếu đkxđ: Vậy \(\frac{2}{3}\le x< 1\)
ĐK x>5
BPT<=> \(x-4\le2\) ( rút gọn cả tử và mẫu cho \(\sqrt{x-5}>0\))
<=>x\(\le\)6
Kết hợp với ĐK => 5<x\(\le\)6