Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2-f\left(x\right)}=f\left(x\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)\ge0\\f^2\left(x\right)+f\left(x\right)-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\f\left(x\right)=-2< 0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow f\left(1\right)=f\left(2\right)=f\left(3\right)=1\)
\(\sqrt{2g\left(x\right)-1}+\sqrt[3]{3g\left(x\right)-2}=2.g\left(x\right)\)
\(VT=1.\sqrt{2g\left(x\right)-1}+1.1\sqrt[3]{3g\left(x\right)-2}\)
\(VT\le\dfrac{1}{2}\left(1+2g\left(x\right)-1\right)+\dfrac{1}{3}\left(1+1+3g\left(x\right)-2\right)\)
\(\Leftrightarrow VT\le2g\left(x\right)\)
Dấu "=" xảy ra khi và chỉ khi \(g\left(x\right)=1\)
\(\Rightarrow g\left(0\right)=g\left(3\right)=g\left(4\right)=g\left(5\right)=1\)
Để các căn thức xác định \(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)-1\ge0\\g\left(x\right)-1\ge0\end{matrix}\right.\)
Ta có:
\(\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+f\left(x\right).g\left(x\right)-f\left(x\right)-g\left(x\right)+1=0\)
\(\Leftrightarrow\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+\left[f\left(x\right)-1\right]\left[g\left(x\right)-1\right]=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\g\left(x\right)=1\end{matrix}\right.\) \(\Leftrightarrow x=3\)
Vậy tập nghiệm của pt đã cho có đúng 1 phần tử
ĐK: x>0
\(bpt\Leftrightarrow\hept{\begin{cases}x\ge0\\6x^2-13x-15=0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x=3;x=\frac{-5}{6}\end{cases}\Leftrightarrow}x=3\Rightarrow y=\pm2}\)
\(\Leftrightarrow\frac{4}{\sqrt{x}}\ge\frac{\left(\sqrt{2x+17}-\sqrt{2x+1}\right)\left(\sqrt{2x+17}+\sqrt{2x+1}\right)}{\sqrt{2x+17}+\sqrt{2x+1}}\)
\(\Leftrightarrow\frac{4}{\sqrt{x}}\ge\frac{16}{\sqrt{2x+17}+\sqrt{2x+1}}\)
\(\Leftrightarrow\sqrt{2x+17}+\sqrt{2x+1}\ge4\sqrt{x}\)
\(\Leftrightarrow\left(\sqrt{2x+17}+\sqrt{2x+1}\right)^2\ge16x\)
\(\Leftrightarrow\sqrt{\left(2x+17\right)\left(2x+1\right)}\ge6x-9\)
\(\Leftrightarrow x\in\left\{\frac{3}{2},4\right\}\)
Theo đk, ta có tập nghiệm của bpt là S= \(\left\{0;4\right\}\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3\left(x^2-4x\right)-\left(x-2\right)>12\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3\left(x^2-4x\right)-\left(2-x\right)>12\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3x^2-13x-10>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3x^2-11x-14>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=5\end{matrix}\right.\)
3x2 - 12x - |x - 2| > 12
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3x^2-12x-\left(x-2\right)>12\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3x^2-12x-\left(2-x\right)>12\end{matrix}\right.\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3x^2-12x-x+2>12\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3x^2-12x+x-2>12\end{matrix}\right.\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\)
Vậy tập nghiệm là \(S=\left(-\infty;-1\right)\cup\left(5;+\infty\right)\)
Lời giải:
Đặt $\sqrt{x+2}=t(t\geq 0)$ thì pt trở thành:
$t^2-2-2t-m-3=0$
$\Leftrightarrow t^2-2t-(m+5)=0(*)$
Để PT ban đầu có 2 nghiệm pb thì PT $(*)$ có 2 nghiệm không âm phân biệt.
Điều này xảy ra khi \(\left\{\begin{matrix} \Delta'=1+m+5>0\\ S=2>0\\ P=-(m+5)\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m>-6\\ m\leq -5\end{matrix}\right.\)
Đáp án B.
ĐK: \(-3\le x\le6\)
Đặt \(\sqrt{x+3}+\sqrt{6-x}=t\left(3\le t\le3\sqrt{2}\right)\)
\(\Rightarrow\sqrt{\left(x+3\right)\left(6-x\right)}=\dfrac{t^2-9}{2}\)
\(\sqrt{x+3}+\sqrt{6-x}-\sqrt{\left(x+3\right)\left(6-x\right)}=m\)
\(\Leftrightarrow m=f\left(t\right)=\dfrac{-t^2+2t+9}{2}\)
Yêu cầu bài toán thỏa mãn khi \(minf\left(t\right)\le m\le maxf\left(x\right)\)
\(\Leftrightarrow\dfrac{-9+6\sqrt{2}}{2}\le m\le3\)
ĐKXĐ: \(-3\le x\le6\)
Đặt \(\sqrt{x+3}+\sqrt{6-x}=t\)
Ta có: \(t=\sqrt{x+3}+\sqrt{6-x}\ge\sqrt{x+3+6-x}=3\)
\(t\le\sqrt{2\left(x+3+6-x\right)}=3\sqrt{2}\)
\(\Rightarrow3\le t\le3\sqrt{2}\)
Lại có:
\(t^2=9+2\sqrt{\left(x+3\right)\left(6-x\right)}\Rightarrow-\sqrt{\left(x+3\right)\left(6-x\right)}=\dfrac{9-t^2}{2}\)
Phương trình trở thành:
\(t+\dfrac{9-t^2}{2}=m\Leftrightarrow m=-\dfrac{1}{2}t^2+t+\dfrac{9}{2}\)
Xét hàm \(f\left(t\right)=-\dfrac{1}{2}t^2+t+\dfrac{9}{2}\) trên \(\left[3;3\sqrt{2}\right]\)
\(-\dfrac{b}{2a}=1\notin\left[3;3\sqrt{2}\right]\)
\(f\left(3\right)=3\) ; \(f\left(3\sqrt{2}\right)=\dfrac{-9+6\sqrt{2}}{2}\)
\(\Rightarrow\dfrac{-9+6\sqrt{2}}{2}\le f\left(t\right)\le3\)
\(\Rightarrow\) Phương trình có nghiệm khi \(\dfrac{-9+6\sqrt{2}}{2}\le m\le3\)
Có 4 giá trị nguyên của m thỏa mãn
ĐK: \(x - 1 \ge 0\,\, \Leftrightarrow \,\,x \ge 1\)
\( \Rightarrow \) TXĐ của phương trình là: \(D = \left[ {1; + \infty } \right)\)
Giải phương trình: \(\sqrt {2{x^2} - 3} = x - 1\)
\(\begin{array}{l} \Leftrightarrow \,\,{\left( {\sqrt {2{x^2} - 3} } \right)^2} = {\left( {x - 1} \right)^2}\\ \Leftrightarrow \,\,2{x^2} - 3 = {x^2} - 2x + 1\\ \Leftrightarrow \,\,{x^2} + 2x - 4 = 0\\ \Leftrightarrow \,\,\left[ {\begin{array}{*{20}{c}}{x = - 1 + \sqrt 5 }\\{x = - 1 - \sqrt 5 }\end{array}} \right.\end{array}\)
Ta thấy \(x = - 1 + \sqrt 5 \) thỏa mãn.
Vậy tập nghiệm của phương trình là: \(S = \left\{ { - 1 + \sqrt 5 } \right\}\)
Chọn C.
ĐKXĐ: \(-4\le x\le6\)
Do \(\sqrt{\left(x+4\right)\left(6-x\right)}\ge0\Rightarrow2\left(x+1\right)\ge0\Rightarrow x\ge-1\)
Khi đó, bình phương 2 vế ta được:
\(\left(x+4\right)\left(6-x\right)\le4\left(x+1\right)^2\)
\(\Rightarrow-x^2+2x+24\le4x^2+8x+4\)
\(\Rightarrow5x^2+6x-20\ge0\) \(\Rightarrow\left[{}\begin{matrix}x\le\frac{-3-\sqrt{109}}{5}\\x\ge\frac{-3+\sqrt{109}}{5}\end{matrix}\right.\)
Kết hợp điều kiện \(-4\le x\le6\) và \(-1\le x\) ta được: \(\frac{-3+\sqrt{109}}{5}\le x\le6\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=5\end{matrix}\right.\) \(\Rightarrow2a+3b=21\)