\(\left(\sqrt{3x-2}-1\right)\sqrt{x^2+1}< 0\)là 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2020

ĐK: \(x\ge\frac{2}{3}\)

\(\left(\sqrt{3x-2}-1\right)\sqrt{x^2+1}< 0\)

<=> \(\sqrt{3x-2}-1< 0\)

<=> \(\sqrt{3x-2}< 1\)

<=> 3x - 2 < 1

<=> x < 1

Đối chiếu đkxđ: Vậy \(\frac{2}{3}\le x< 1\)

5 tháng 4 2020

mày đoán xem

4 tháng 3 2020

mình sửa lại bài 3 ý a, \(\left|5x-3\right|< 2\)

NV
29 tháng 4 2020

ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\) ; \(x\ne-5\)

- Với \(x=\pm3\) thỏa mãn

- Với \(x\ne\pm3\)

\(\Leftrightarrow\frac{3x-1}{x+5}\le x\Leftrightarrow x-\frac{3x-1}{x+5}\ge0\)

\(\Leftrightarrow\frac{x^2+2x+1}{x+5}\ge0\Leftrightarrow\frac{\left(x+1\right)^2}{x+5}\ge0\)

\(\Rightarrow x>-5\)

Vậy nghiệm của BPT trên \(\left[-5;5\right]\) là: \(\left[{}\begin{matrix}-5< x\le-3\\3\le x\le5\end{matrix}\right.\)

Tính tổng nghiệm hay tổng nghiệm nguyên?

Tổng nghiệm là \(\sum x=5\)

29 tháng 4 2020

tổng nghiệm nguyên b

5 tháng 4 2020

ĐK \(\hept{\begin{cases}x\ge5\\x\le-2\end{cases}}\)

\(\Rightarrow x^2-3x-10< x^2-4x+4\)

<=> x<14

=> (a;b)=(5;14)

=> a+b=19

21 tháng 2 2020

a, Đặt\(\sqrt{x.\left(5-x\right)}=t\) \(\left(0\le t\right)\)

Bpt trở thành: \(-t^2+t+2< 0\)

<=> \(\left[{}\begin{matrix}t< -1\left(loai\right)\\t>2\end{matrix}\right.\)

Với t>2 =>\(\sqrt{x.\left(5-x\right)}>2\)

<=>\(-x^2+5x-4>0\)

<=>\(1< x< 4\)

<=>\(x\in\left(1;4\right)\)

NV
22 tháng 2 2020

b/ Hiển nhiên rằng vế phải không âm, do đó nghiệm của BPT chính là tất cả các giá trị làm cho biểu thức xác định

Vậy bạn chỉ cần tìm ĐKXĐ cho vế trái là xong (rất đơn giản)

26 tháng 4 2019

1) ĐKXĐ: \(\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)

ta có: (-6).\(\sqrt{6x^2-18x+12}\) > \(6x^2-18x-60\)

\(6x^2-18x+12\) + \(2.3.\sqrt{6x^2-18x+12}+9-81\) > 0

\(\left(\sqrt{6x^2-18x+12}+3\right)^2-9^2\) > 0

\(\left(\sqrt{6x^2-18x+12}+12\right).\left(\sqrt{6x^2-18x+12}-6\right)\) > 0

\(\sqrt{6x^2-18x+12}-6\) > 0

\(\sqrt{6x^2-18x+12}>6\)

\(6x^2-18x+12>36\)

\(6x^2-18x-24>0\)

\(\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\)

đối chiếu ĐKXĐ ban đầu ta được: x ϵ (-∞;-1) \(\cup\)(4;+∞)

b) ĐKXĐ: \(\forall x\) ϵ R

\(\left(x-2\right)\sqrt{x^2+4}-\left(x-2\right)\left(x+2\right)\le0\)

\(\left(x-2\right)\left(\sqrt{x^2+4}-x-2\right)\le0\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\\sqrt{x^2+4}-x-2\le0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\\sqrt{x^2+4}-x-2\ge0\end{matrix}\right.\end{matrix}\right.\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x^2+4\le x^2+4x+4\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x^2+4\ge x^2+4x+4\end{matrix}\right.\end{matrix}\right.\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x\le0\end{matrix}\right.\end{matrix}\right.\)\(\left[{}\begin{matrix}x\ge2\\x\le0\end{matrix}\right.\)

Đối chiếu ĐKXĐ ta được x ϵ ( -∞;0) \(\cup\)( 2; +∞)