Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S là số tự nhiên
<=> 8n + 193 chia hết cho 4n + 3
=> 8n + 6 + 187 chia hết cho 4n + 3
=> 2.(4n + 3) + 187 chia hết cho 4n + 3
Mà 2.(4n + 3) chia hết cho 4n + 3
=> 187 chia hết cho 4n + 3
=> 4n + 3 thuộc Ư(187) = {-187; -17; -11; -1; 1; 11; 17; 187}
=> n thuộc {-95/2; -5; -7; -1; -1/2; 2; 7/2; 46}
Mà n là số tự nhiên
Vậy n thuộc {2; 46}.
Để A là số tự nhiên thì:
8n + 193 chia hết cho 4n + 3
=> 8n + 6 + 187 chia hết cho 4n + 3
=> 2.(4n + 3) + 187 chia hết cho 4n + 3
=> 187 chia hết cho 4n + 3
=> 4n + 3 \(\in\)Ư(187) = {1; 11; 17; 187}
=> 4n \(\in\){-2; 8; 14; 184}
=> n \(\in\){-1/2; 2; 7/2; 46}
Mà n là số tự nhiên
Vậy S = {2; 46}.
Đặt \(A=\dfrac{a^2+a+3}{a+1}\\ \) ta có:
\(A=\dfrac{a^2+a+3}{a+1}=\dfrac{a\left(a+1\right)+3}{a+1}=a+\dfrac{3}{a+1}\)
để A nguyên => \(3⋮a+1\\ \)
\(\Rightarrow3⋮a+1\\ \Rightarrow a+1\inƯ_{\left(3\right)}=\left\{1;-1;3;-3\right\}\)
ta có bảng sau:
a+1 | 1 | -1 | 3 | -3 |
a | 0 | -2 | 2 | -4 |
vậy a = {0;-2;2;-4}
Để\(\frac{n}{n+3}\)
la stn =>n chia het cho n+3
Ta có: n=n+3-3
Mà n chia hết cho n+3=>[(n+3)-3]chia hết cho n+3
n+3 chia hết cho n+3=>3 chia hết cho n+3
=>n+3 thuoc Ư(3)
mà Ư(3)={1;3;-1;-3}
n+3 | 1 | 3 | -1 | -3 |
n | -2 | 0 | -4 | -6 |
mà n la stn =>n=0
Vậy n=0
Gọi số đó là a thì a \(\in\) Z+
Theo bài ra ta có:
\(\left\{{}\begin{matrix}a.\dfrac{8}{15}\in N\\a.\dfrac{21}{36}\in N\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a⋮15\\a⋮36\end{matrix}\right.\)
a \(\in\) BC(15; 36) Vì amin nên a \(\in\) BCNN(15; 36)
15 = 3.5; 36 = 22.32; BCNN(15; 36) = 22.32.5 = 180
Kết luận số thỏa mãn đề bài là 180
a ) Gọi 4 số tự nhiên liên tiếp là \(n;n+1;n+2;n+3\)
Ta có : \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=n^4+6n^3+11n^2+6n+1=\left(x^2+3x+1\right)^2\) là số chính phương (đpcm)
b ) \(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=a+\frac{3}{a+1}\)
\(\Rightarrow a+1\) thuộc Ư(3) = { -3; -1; 1; 3 }
=> a = { - 4; - 2; 0; 2 }
để ... nguyên dương
=>2a+5 chia hết cho a+1
=>2(a+1)+3 chia hết cho a+1
=>a+1 thuộc Ư(3)={1;3}
=>a thuộc {0;2}
\(\frac{2a+5}{a+1}=\frac{2\left(a+1\right)+3}{a+1}=2+\frac{3}{a+1}=>a+1=Ư\left(3\right)=\left\{-1;1;-3;3\right\}\)
=>a={-4;-2;0;2}
tick nhé