Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\sqrt[3]{18+\sqrt{x+100}}+\sqrt[3]{18-\sqrt{x+100}}\) (Điều kiện xác định : \(x\ge-100\))
Ta có : \(36=\left(18+\sqrt{x+100}\right)+\left(18-\sqrt{x+100}\right)=\left(\sqrt[3]{18+\sqrt{x+100}}\right)^3+\left(\sqrt[3]{18-\sqrt{x+100}}\right)^3\)
Đặt \(a=\sqrt[3]{18+\sqrt{x+100}}\) ; \(b=\sqrt[3]{18-\sqrt{x+100}}\)
\(\Rightarrow a^3+b^3=36\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)=36\). Vì \(a+b\in Z^+\) nên a+b \(\in\) Ư(36)
\(\Rightarrow a+b\in\left\{1;2;3;4;6;9;12;18;36\right\}\)
Giải từng trường hợp , được x = 225 , y = 3 thoả mãn đề bài.
Lời giải:
PT $\Leftrightarrow \sqrt{x+y+3}=\sqrt{x}+\sqrt{y}-1$
$\Rightarrow x+y+3=(\sqrt{x}+\sqrt{y}-1)^2$
$\Leftrightarrow x+y+3=x+y+1-2(\sqrt{x}+\sqrt{y}-\sqrt{xy})$
$\Leftrightarrow 1+\sqrt{x}+\sqrt{y}-\sqrt{xy}=0(*)$
$\Rightarrow (\sqrt{x}+\sqrt{y})^2=(\sqrt{xy}-1)^2$
$\Rightarrow 4\sqrt{xy}=xy+1-x-y\in\mathbb{Z}$
Ta có nhận xét sau: Với số không âm $a$ bất kỳ thì khi $\sqrt{a}$ là số hữu tỉ thì $\sqrt{a}$ cũng là số chính phương.
Do đó: $\sqrt{xy}$ là scp
Kết hợp $(*)$ suy ra $\sqrt{x}+\sqrt{y}\in\mathbb{Z}$
$\sqrt{x}(\sqrt{x}+\sqrt{y})=x+\sqrt{xy}\in\mathbb{Z}$
$\Rightarrow \sqrt{x}=\frac{x+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\in\mathbb{Q}$
$\Rightarrow \sqrt{x}$ là scp. Kéo theo $\sqrt{y}$ là scp.
Từ $(*)$ ta cũng có $(\sqrt{x}-1)(1-\sqrt{y})=-2$
Đến đây thì với $\sqrt{x}, \sqrt{y}\in\mathbb{Z}$ ta có pt tích khá đơn giản.
x = 225 , y = 3 nhé :)
Phần giải mình đã làm cho bạn ở H.vn
\(\sqrt{x+y+3}+1=\sqrt{x}+\sqrt{y}\)
Bình phương 2 vế, ta có:
\(x+y+3+1=x+y\)
\(x+y+3+1-x-y=0\)
\(4=0\) (vô lý)
Vậy phương trình vô nghiệm
-Chúc bạn học tốt-
\(\Rightarrow x+2\sqrt{3}=y+z+2\sqrt{yz}\)
\(\Rightarrow2\sqrt{yz}=\left(x-y-z\right)+2\sqrt{3}\)
\(\Rightarrow4yz=\left(x-y-z\right)^2+12+4\sqrt{3}\left(x-y-z\right)\)
\(\Rightarrow4\sqrt{3}\left(x-y-z\right)=4yz-12-\left(x-y-z\right)^2\) (1)
\(\sqrt{3}\) là số vô tỉ nên đẳng thức xảy ra khi: \(x-y-z=0\)
Thay ngược vào (1) \(\Rightarrow yz=3\Rightarrow\left(y;z\right)=\left(1;3\right);\left(3;1\right)\)
\(\Rightarrow\sqrt{x+2\sqrt{3}}=\sqrt{4+2\sqrt{3}}\Rightarrow x=4\)
ĐKXĐ: x;y > 0
\(pt\Leftrightarrow\sqrt{x+\sqrt{x+\sqrt{x}}}=y^2-x\)(bình phương + chuyển vế)
Vì \(\hept{\begin{cases}x;y\inℤ\\x;y\ge0\end{cases}\Rightarrow}x;y\inℕ\)
\(\Rightarrow y^2-x\inℕ\)(Vì VP > 0 nên VT > 0 mà 2 số này thuộc N nên hiệu của chúng thuộc N)
Đặt \(y^2-x=a\left(a\inℕ\right)\)
Khi đó \(\sqrt{x+\sqrt{x+\sqrt{x}}}=a\)
\(\Leftrightarrow\sqrt{x+\sqrt{x}}=a^2-x\)(bình phương+chuyển vế)
Tương tự như trên
Đặt \(a^2-x=b\left(b\inℕ\right)\)
\(\Rightarrow\sqrt{x+\sqrt{x}}=b\)
\(\Leftrightarrow x+\sqrt{x}=b^2\left(1\right)\)
Từ (1) => \(\sqrt{x}\inℕ\)
Ta có: \(\left(1\right)\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)=b^2\)
Vì \(\sqrt{x}\)và \(\sqrt{x}+1\)là 2 số tự nhiên liên tiếp
Mà b2 là số chính phương
\(\Rightarrow\sqrt{x}=0\)
\(\Rightarrow x=0\)
\(\Rightarrow y=0\)
Vậy pt có nghiệm duy nhất (x;y) = (0;0)
Bình phương hai vế ta có:
\(x+\sqrt{x+\sqrt{x+\sqrt{x}}}=y^2\Rightarrow\sqrt{x+\sqrt{x+\sqrt{x}}}=y^2-x=t\)
Tiếp túc bình phương và chuyển vế, ta có:
\(\sqrt{x+\sqrt{x}}=t^2-x=u\)
\(x+\sqrt{x}=u^2\)
Do y nguyên, x nguyên nên t nguyên, suy ra u nguyên, suy ra u2 nguyên, vậy thì \(\sqrt{x}\) nguyên.
Ta có \(\sqrt{x}\left(\sqrt{x}+1\right)=u^2\). Hai số tự nhiên liên tiếp có tích là số chính phương u2 nên \(\sqrt{x}=0\Rightarrow x=0.\)
Từ đó suy ra y = 0.
Vậy nghiệm của phương trình là (x; y) = (0; 0).
Không mất tính tổng quát , giả sử \(x\ge y\)
Khi đó \(\sqrt{18}=\sqrt{x}+\sqrt{y}\ge2\sqrt{y}\)
\(\Rightarrow18\ge4y\Rightarrow y\le\frac{18}{4}\)
Mà y nguyên, y>0 \(\Rightarrow y\in\left\{1,2,3,4\right\}\)
Xét y=1\(\Rightarrow x=\left(\sqrt{18}-1\right)^2\)(loại)
Xét y=2 \(\Rightarrow x=\left(\sqrt{18}-\sqrt{2}\right)^2=8\left(tm\right)\)
xét y=3 \(\Rightarrow x=\left(\sqrt{18}-\sqrt{3}\right)^2\)(loại)
Xét y=4 \(\Rightarrow x=\left(\sqrt{18}-\sqrt{4}\right)^2\)(loại)
vậy...............
e lm thế này đc ko ạ .
\(\sqrt{x}+\sqrt{y}=\sqrt{18}\)
\(\sqrt{x}+\sqrt{y}=3\sqrt{2}\)
\(\sqrt{x}=3\sqrt{2}-\sqrt{y}\)
Thay \(\sqrt{x}\)ta đc
\(3\sqrt{2}-\sqrt{y}+\sqrt{y}=\sqrt{18}\)
\(3\sqrt{2}=\sqrt{18}\)
Suy ra : ko tìm đc x;y