\(\sqrt{x+2\sqrt{3}}=\sqrt{y}+\sqrt{z}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 3 2021

\(\Rightarrow x+2\sqrt{3}=y+z+2\sqrt{yz}\)

\(\Rightarrow2\sqrt{yz}=\left(x-y-z\right)+2\sqrt{3}\)

\(\Rightarrow4yz=\left(x-y-z\right)^2+12+4\sqrt{3}\left(x-y-z\right)\)

\(\Rightarrow4\sqrt{3}\left(x-y-z\right)=4yz-12-\left(x-y-z\right)^2\) (1)

\(\sqrt{3}\) là số vô tỉ nên đẳng thức xảy ra khi: \(x-y-z=0\)

Thay ngược vào (1) \(\Rightarrow yz=3\Rightarrow\left(y;z\right)=\left(1;3\right);\left(3;1\right)\)

\(\Rightarrow\sqrt{x+2\sqrt{3}}=\sqrt{4+2\sqrt{3}}\Rightarrow x=4\)

10 tháng 1 2018

\(\sqrt{x+3\sqrt{3}}=\sqrt{y}+\sqrt{z}\)

\(\Leftrightarrow3\sqrt{3}-2\sqrt{yz}=y+z-x\)

Ta có VP là số nguyên nên VT cũng phải là số nguyên

Giả sử \(yz=a^2\) thì VT không phải số nguyên

Nên yz không phải số chính phương.

Nên để VT là số nguyên thì chỉ có thể là O

\(\Rightarrow3\sqrt{3}=2\sqrt{yz}\)

\(\Rightarrow yz=\frac{27}{4}\) loại vì yz là số nguyên dương

Vậy PT vô nghiệm

8 tháng 1 2019

\(ĐKXĐ:x;y\ge\frac{1}{2}\)

Chia cả 2 vế của pt cho x ; y ta được

\(\frac{\sqrt{2y-1}}{y}+\frac{\sqrt{2x-1}}{x}=2\)

Dễ dàng c/m được \(\hept{\begin{cases}\sqrt{2y-1}\le y\\\sqrt{2x-1}\le x\end{cases}\Rightarrow VT\le1+1=2}\)

Dấu "=" xảy ra <=>. x= y = 1

Vậy x = y = 1

9 tháng 1 2019

Rất easy! Dùng Cô si ngược đê!

ĐKXĐ: \(x,y\ge\frac{1}{2}\)

Theo Cô si (ngược),ta có:

\(VT=x\sqrt{1\left(2y-1\right)}+y\sqrt{1\left(2x-1\right)}\)

\(VT\le x.\frac{2y-1+1}{2}+y.\frac{2x-1+1}{2}\)

\(=xy+yx=2xy=VP\)

Dấu "=" xảy ra \(\Leftrightarrow2x-1=2y-1=1\Leftrightarrow2x=2y=2\Leftrightarrow x=y=1\)

21 tháng 10 2020

2.

Nhân hai vế của phương trình với 6xy:
                   6y+6x+1=xy6y+6x+1=xy
Đưa về phương trình ước số:
      x(y−6)−6(y−6)=37x(y−6)−6(y−6)=37 
⇔(x−6)(y−6)=37⇔(x−6)(y−6)=37
Do vai trò bình đẳng của xx và yy, giả sử xy⩾1x⩾y⩾1, thế thì x−6⩾y−6⩾−5x−6⩾y−6⩾−5.
Chỉ có một trường hợp:
               {−6=37y−6=1⇔{=43y=7{−6=37y−6=1⇔{=43y=7
Đáp số:  (43;7),(7;43)
 

1 tháng 8 2017

4. \(\sqrt{x}+\sqrt{y}=6\sqrt{55}\)

\(6\sqrt{55}\)  là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa  \(\sqrt{55}\)

Đặt  \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\)  với  \(a,b\in N\)

\(\Rightarrow a+b=6\)

Xét các TH:

a = 0 => b = 6

a = 1 => b = 5

a = 2 => b = 4

a = 3 => b = 3

a = 4 => b = 2

a = 5 => b = 1

a = 6 => b = 0

Từ đó dễ dàng tìm đc x, y

3 tháng 8 2017

Biên cưng. Minh Quân đây.