Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: \(x>0\)
b: Ta có: \(A=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)
\(=x+\sqrt{x}-2\sqrt{x}-1+1\)
\(=x-\sqrt{x}\)
Bài 1 :
\(a.\sqrt{x^2-1}\)
\(ĐK:\)
\(x^2-1\ge0\)
\(\Leftrightarrow x^2\ge1\)
\(\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\)
Bài 2 :
\(2\cdot\sqrt{\left(\sqrt{2}-3\right)^2}+\sqrt{48}-5\sqrt{50}\)
\(=2\cdot\left|\sqrt{2}-3\right|+4\sqrt{3}-25\sqrt{2}\)
\(=-2\cdot\left(\sqrt{2}-3\right)+4\sqrt{3}-25\sqrt{2}\)
\(=-2\sqrt{2}-6+4\sqrt{3}-25\sqrt{2}\)
\(=-27\sqrt{2}-6+4\sqrt{3}\)
\(\dfrac{1}{5}\sqrt[]{25x+50}-5\sqrt[]{x+2}+\sqrt[]{9x+18}+9=0\)
\(\Leftrightarrow\dfrac{1}{5}\sqrt[]{25\left(x+2\right)}-5\sqrt[]{x+2}+\sqrt[]{9\left(x+2\right)}+9=0\)
\(\Leftrightarrow\dfrac{1}{5}.5\sqrt[]{x+2}-5\sqrt[]{x+2}+3\sqrt[]{x+2}+9=0\)
\(\Leftrightarrow\sqrt[]{x+2}-5\sqrt[]{x+2}+3\sqrt[]{x+2}+9=0\)
\(\Leftrightarrow\sqrt[]{x+2}\left(1-5+3\right)+9=0\)
\(\Leftrightarrow-\sqrt[]{x+2}+9=0\)
\(\Leftrightarrow\sqrt[]{x+2}=9\)
\(\Leftrightarrow x+2=81\)
\(\Leftrightarrow x=79\)
Đặt \(A=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
Áp dụng \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\) ta có:
\(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
\(A^3=2+\sqrt{5}+2-\sqrt{5}+3\sqrt[3]{4-5}\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)
\(=4-3A\)
Giải PT:
\(A^3+3A-4=0\Leftrightarrow A^3-1+3A-3=0\)\(\Leftrightarrow\left(A-1\right)\left(A^2+A+1\right)+3\left(A-1\right)=0\)\(\Leftrightarrow\left(A-1\right)\left(A^2+A+4\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}A-1=0\\A^2+A+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}A=1\\A^2+2.\frac{1}{2}A+\frac{1}{4}-\frac{1}{4}+4=0\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}A=1\\\left(A+\frac{1}{2}\right)^2+\frac{15}{4}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}A=1\\\left(A+\frac{1}{2}\right)^2=-\frac{15}{4}\left(L\right)\end{cases}}}\)
Vậy \(A=1\)
\(=\dfrac{\sqrt{a}+2+\sqrt{a}-2}{a-4}:\dfrac{\sqrt{a}+2-2}{\sqrt{a}+2}\)
\(=\dfrac{2\sqrt{a}}{a-4}\cdot\dfrac{\sqrt{a}+2}{\sqrt{a}}=\dfrac{2}{\sqrt{a}-2}\)
Với bài này bạn áp dụng công thức : \(\sqrt{x^2}= \left|x\right|\); Nếu \(x\ge0\) thì \(\left|x\right|=x\)
Nếu \(x< 0\) thì \(\left|x\right|=-x\)
Áp dụng :
\(A=\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}=\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}=\left(2-\sqrt{3}\right)-\left(2+\sqrt{3}\right)=-2\sqrt{3}\)
điều kiện :a<=0
\(A^2=7-4\sqrt{3}-2\sqrt{\left(7-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)}+7+4\sqrt{3}\)
\(=14-2\sqrt{49-48}=12\)
\(\Rightarrow A=\sqrt{12}\left(LOẠI\right)HAYA=-\sqrt{12}\left(NHẬN\right)\)
\(5\sqrt{18}-\sqrt{50}+\sqrt{8}\)
\(=5\sqrt{2.9}-\sqrt{25.2}+\sqrt{2.4}\)
\(=15\sqrt{2}-5\sqrt{2}+2\sqrt{2}\)
\(=12\sqrt{2}\)
\(5\sqrt{18}-\sqrt{50}+\sqrt{8}=9.899494937\)
P/s; Tôi ko chắc đâu mới lớp 5 thôi
Bạn chỉ cần lam cho trong căn xuất hiện hằng đẵng thức là được
VD:\(\sqrt{2+2\sqrt{2}}=\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\left(\sqrt{2}+1\right)\)
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
a, \(=\sqrt{\left(2\sqrt{2}\right)^2+2\times2\sqrt{2}\times\sqrt{5}+\left(\sqrt{5}\right)^2}\)
\(=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}=2\sqrt{2}+\sqrt{5}\)
\(\sqrt{50-\sqrt{18}}=\sqrt{50-3\sqrt{2}}\)
\(\sqrt{50-\sqrt{18}}=\sqrt{5\sqrt{2}-3\sqrt{2}}\)
\(=\sqrt{\left(5-3\right)\sqrt{2}}=\sqrt{2\sqrt{2}}\)