K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2022

`\sqrt{48}-\sqrt{3}=\sqrt{4^2 . 3}-\sqrt{3}=4\sqrt{3}-\sqrt{3}=3\sqrt{3}`

8 tháng 5 2022

\(\sqrt{50-\sqrt{18}}=\sqrt{50-3\sqrt{2}}\)

8 tháng 5 2022

\(\sqrt{50-\sqrt{18}}=\sqrt{5\sqrt{2}-3\sqrt{2}}\)

\(=\sqrt{\left(5-3\right)\sqrt{2}}=\sqrt{2\sqrt{2}}\)

14 tháng 10 2021

Chứng minh đẳng thức"

\(\dfrac{A+\sqrt{A}}{1+\sqrt{A}}=\dfrac{\sqrt{A}-A}{1-\sqrt{A}}\) (với A không âm và A khác 1) 

giúp mình với ạ 

14 tháng 7 2021

Bài 1 : 

\(a.\sqrt{x^2-1}\)

\(ĐK:\)

\(x^2-1\ge0\)

\(\Leftrightarrow x^2\ge1\)

\(\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\)

Bài 2 : 

\(2\cdot\sqrt{\left(\sqrt{2}-3\right)^2}+\sqrt{48}-5\sqrt{50}\)

\(=2\cdot\left|\sqrt{2}-3\right|+4\sqrt{3}-25\sqrt{2}\)

\(=-2\cdot\left(\sqrt{2}-3\right)+4\sqrt{3}-25\sqrt{2}\)

\(=-2\sqrt{2}-6+4\sqrt{3}-25\sqrt{2}\)

\(=-27\sqrt{2}-6+4\sqrt{3}\)

14 tháng 7 2021

undefined

12 tháng 7 2021

\(\sqrt{13+\sqrt{48}}=\sqrt{13+\sqrt{4.12}}=\sqrt{13+2\sqrt{12}}=\sqrt{\left(\sqrt{12}+1\right)^2}\)

\(=\sqrt{12}+1=2\sqrt{3}+1\)

\(\Rightarrow\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-2\sqrt{3}-1}=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\sqrt{3}-1\)

\(\Rightarrow\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{3+\sqrt{3}-1}=\sqrt{2+\sqrt{3}}\)

\(\Rightarrow\sqrt{\dfrac{4+2\sqrt{3}}{2}}=\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}=\dfrac{\sqrt{3}+1}{\sqrt{2}}\)

\(\Rightarrow2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}==2.\dfrac{\sqrt{3}+1}{\sqrt{2}}=\sqrt{6}+\sqrt{2}\)

2) biến đổi khúc sau như câu 1:

\(\Rightarrow\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

 

12 tháng 7 2021

1) Ta có: \(\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-\sqrt{13+\sqrt{4.12}}}=\sqrt{5-\sqrt{13+2\sqrt{12}}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{12}\right)^2+2.\sqrt{12}+1^2}}=\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}=\sqrt{5-\left|\sqrt{4.3}+1\right|}\)

\(=\sqrt{5-\left(2\sqrt{3}+1\right)}=\sqrt{5-2\sqrt{3}-1}=\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\)

\(\Rightarrow2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}=2\sqrt{3+\sqrt{3}-1}=2\sqrt{2+\sqrt{3}}\)

\(=2\sqrt{\dfrac{4+2\sqrt{3}}{2}}=2\sqrt{\dfrac{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}{2}}=2\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}\)

\(=2.\dfrac{\left|\sqrt{3}+1\right|}{\sqrt{2}}=\sqrt{2}\left(\sqrt{3}+1\right)=\sqrt{6}+\sqrt{2}\)

2) Ta có: \(\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{3}-1\) (như trên)

\(\Rightarrow\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}\) 

\(=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}=\sqrt{\left(\sqrt{3}+1\right)^2}=\left|\sqrt{3}+1\right|=\sqrt{3}+1\)

 

 

25 tháng 7 2018

Đặt \(A=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)

Áp dụng \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\) ta có:

\(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)

\(A^3=2+\sqrt{5}+2-\sqrt{5}+3\sqrt[3]{4-5}\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)

\(=4-3A\)

Giải PT:

\(A^3+3A-4=0\Leftrightarrow A^3-1+3A-3=0\)\(\Leftrightarrow\left(A-1\right)\left(A^2+A+1\right)+3\left(A-1\right)=0\)\(\Leftrightarrow\left(A-1\right)\left(A^2+A+4\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}A-1=0\\A^2+A+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}A=1\\A^2+2.\frac{1}{2}A+\frac{1}{4}-\frac{1}{4}+4=0\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}A=1\\\left(A+\frac{1}{2}\right)^2+\frac{15}{4}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}A=1\\\left(A+\frac{1}{2}\right)^2=-\frac{15}{4}\left(L\right)\end{cases}}}\)

Vậy \(A=1\)

13 tháng 12 2021

\(a,=\left(2\sqrt{6}-4\sqrt{3}\right)\sqrt{6}+12\sqrt{2}=12-12\sqrt{2}+12\sqrt{2}=12\\ b,=\dfrac{6\left(3-\sqrt{3}\right)}{6}+\sqrt{3}=3-\sqrt{3}+\sqrt{3}=3\)

14 tháng 12 2021

cảm ơn nhìu nha

a: ĐKXĐ: \(x>0\)

b: Ta có: \(A=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)

\(=x+\sqrt{x}-2\sqrt{x}-1+1\)

\(=x-\sqrt{x}\)

23 tháng 5 2016

Với bài này bạn áp dụng công thức : \(\sqrt{x^2}= \left|x\right|\); Nếu \(x\ge0\) thì \(\left|x\right|=x\)

                                                                             Nếu \(x< 0\) thì \(\left|x\right|=-x\)

Áp dụng : 

\(A=\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}=\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}=\left(2-\sqrt{3}\right)-\left(2+\sqrt{3}\right)=-2\sqrt{3}\)

23 tháng 5 2016

điều kiện :a<=0

\(A^2=7-4\sqrt{3}-2\sqrt{\left(7-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)}+7+4\sqrt{3}\)

\(=14-2\sqrt{49-48}=12\)

\(\Rightarrow A=\sqrt{12}\left(LOẠI\right)HAYA=-\sqrt{12}\left(NHẬN\right)\)