Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A > B
Vì A là 20182-20162 là bình phương lên sẽ lớn hơn là 1 x 2017
So sánh A và B, biết:
A = 20182 - 20162 và B = 2. 2017
Ta có:
A= 20182 - 20162
=2018. (2017 + 1) - 2016. (2017 - 1)
=2018. 2017 + 2018 - 2016. 2017 + 2016
=2017. (2018 - 2016) + 4034
=2017. 2 + 4034
_Vì 2017. 2 + 4034 > 2. 2017
=>20182 - 20162 > 2. 2017
=>A >B
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c\)
Thay a = b = c vào P
\(\Rightarrow P=\frac{b^{10}.b^5.b^{2019}}{b^{2018}}=\frac{b^{2034}}{b^{2018}}=b^{16}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+.........+\frac{1}{3^{100}}\)
\(\Rightarrow3A-A=1+\frac{1}{3}+\frac{1}{3^2}+.........+\frac{1}{3^{100}}-\left(\frac{1}{3}+\frac{1}{3^2}+.......+\frac{1}{3^{99}}\right)=1+\frac{1}{3}\)
\(\Rightarrow2A=1+\frac{1}{3}\Rightarrow A=\left(1+\frac{1}{3}\right):2\)
=>3A=1/3^2+1/3^3+1/3^4+...+1/3^100
=>3A-A=(1/3^2+1/3^3+1/3^4+...+1/3^100) - (1/3+1/3^2+1/3^3+...+1/3^99)
=>2A=1/3^100-1/3
=>A=(\(\frac{1}{3^{100}}\)- \(\frac{1}{3}\)):2
Li ke mình nha!
A= 20-21+22-23+24-25...+22018
A=20-21+22-23(20-21+22)+26(...)+...22016(20+21+22)
xet thay 20-21+22 chia het cho 3
thi toan bo day co 673 cap chia het cho 3
k please
Nhận xét :
\(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3}\)
....
\(\frac{1}{2018^2}=\frac{1}{2018.2018}< \frac{1}{2017.2018}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2018^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)
=> \(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)
=> \(A< 1-\frac{1}{2018}< 1=B\)
Vậy \(A< B\)
A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2018^2}=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{2018.2018}\)
< \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)
= \(1-\frac{1}{2018}=\frac{2017}{2018}< 1\)
=> A < B
Vậy A < B