Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)
\(\Rightarrow2A=1+A-\frac{1}{2^{99}}\)
\(\Rightarrow A=1-\frac{1}{2^{99}}< 1\)
Vậy A <1.
\(\frac{x}{y}=a\Rightarrow x=ay\)
\(\Rightarrow\frac{x+y}{x-y}=\frac{ay+y}{ay-y}=\frac{y\left(a+1\right)}{y\left(a-1\right)}=\frac{a+1}{a-1}\)
\(\frac{a}{b}=2\Rightarrow a=2b;\frac{c}{b}=3\Rightarrow c=3b\Rightarrow c-b=2b\)
\(\Rightarrow a=c-b\)
\(\Rightarrow\frac{a+c}{b+c}=\frac{c-b+b}{b+c}=\frac{b}{b+c}\)
a) \(\frac{3}{2}x-\frac{2}{5}=\frac{1}{3}x-\frac{1}{4}\)
=> \(\frac{3}{2}x-\frac{2}{5}-\frac{1}{3}x+\frac{1}{4}=0\)
=> \(\left(\frac{3}{2}-\frac{1}{3}\right)x+\left(-\frac{2}{5}+\frac{1}{4}\right)=0\)
=> \(\frac{7}{6}x-\frac{3}{20}=0\)
=> \(\frac{7}{6}x=\frac{3}{20}\)
=> \(x=\frac{3}{20}:\frac{7}{6}=\frac{3}{20}\cdot\frac{6}{7}=\frac{9}{70}\)
b) \(2x-\frac{2}{3}=7x+\frac{2}{3}-1\)
=> \(2x-\frac{2}{3}=7x-\frac{1}{3}\)
=> \(2x-\frac{2}{3}-7x+\frac{1}{3}=0\)
=> (2x - 7x) + (-2/3 + 1/3) = 0
=> -5x - 1/3 = 0
=> -5x = 1/3
=> x = -1/15
Áp dụng công thức: (n-2)n(n+2) = n3 - 4n => n3 = (n-2).n.(n+2) + 4n
b18) Áp dụng: ta có: 23 = 4.2; 43 = 2.4.6 + 4.4 ; 63 = 4.6.8 + 4.6; ...; 1003 = 98.100.102 + 4.100
=> A = 4.2 + 2.4.6 + 4.4 + 4.6.8 + 4.6 +...+ 98.100.102 + 4.100
= (2.4.6 + 4.6.8 + 6.8.10 +....+ 98.100.102 ) + 4.(2 + 4 + 6 + ...+ 100) = B + 4.C
Tính B = 2.4.6 + 4.6.8 + 6.8.10 +....+ 98.100.102
=> 8.B = 2.4.6.8 + 4.6.8.8 + 6.8.10.8 +...+ 98.100.102.8
= 2.4.6.8 + 4.6.8 (10 - 2) + 6.8.10.(12 - 4) +...+ 98.100.102.(104 - 96)
= 2.4.6.8 + 4.6.8.10 - 2.4.6.8 + 6.8.10.12 - 4.6.8.10 +...+ 98.100.102.104 - 96.98.100.102
= (2.4.6.8 + 4.6.8.10 + 6.8.10.12 +...+ 98.100.102.104) - (2.4.6.8 + 4.6.8.10 +...+ 96.98.100.102)
= 98.100.102.104
=> B =98.100.102.104 : 8 = 12 994 800
C = 2+ 4+ 6 +..+100 = (2+100) . 50 : 2 = 2550
Vậy A = B +4C = 12 994 800 + 4. 2550 = 13 005 000
\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}\)
\(A=1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}\right)\)
\(>1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+4\times\frac{1}{8}+4\times\frac{1}{12}+4\times\frac{1}{16}\)
\(=1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)
\(=1+2\times\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\)
\(>1+2\times\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)=1+2\times1\)
\(=1+2=3=B\)
\(\Rightarrow A>B\)
Học tốt
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+.........+\frac{1}{3^{100}}\)
\(\Rightarrow3A-A=1+\frac{1}{3}+\frac{1}{3^2}+.........+\frac{1}{3^{100}}-\left(\frac{1}{3}+\frac{1}{3^2}+.......+\frac{1}{3^{99}}\right)=1+\frac{1}{3}\)
\(\Rightarrow2A=1+\frac{1}{3}\Rightarrow A=\left(1+\frac{1}{3}\right):2\)
=>3A=1/3^2+1/3^3+1/3^4+...+1/3^100
=>3A-A=(1/3^2+1/3^3+1/3^4+...+1/3^100) - (1/3+1/3^2+1/3^3+...+1/3^99)
=>2A=1/3^100-1/3
=>A=(\(\frac{1}{3^{100}}\)- \(\frac{1}{3}\)):2
Li ke mình nha!