K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2016

Ta có:

7215 = (23.32)15 = 245.330

321.969 = 321.(25.3)9 = 321.245.39 = 330.245

=> 7215 = 321.969

2 tháng 10 2018

ngủ đi bn khuya r đó.mai mik tr lời cho

Xin lỗi bạn mình chỉ làm đc câu 2 thuiiii :((((((

b) Ta có: 

\(555^{20}=111^{20}.5^{20}=111^{20}.\left(5^2\right)^{10}=111^{20}.25^{10}\)

\(222^{50}=111^{50}.2^{50}=111^{50}.\left(2^5\right)^{10}=111^{50}.32^{10}\)

Vì \(111^{50}.32^{10}>111^{20}.25^{10}\)nên \(222^{50}>555^{20}\)

9 tháng 1 2018

3^2n = (3^2)^n = 9^n

2^3n = (2^3)^n = 8^n

Vì 9^n > 8^n => 3^2n > 2^3n

7.2^13 < 8.2^13 = 2^3.2^13 = 2^3+13 = 2^16

=> 7.2^13 < 2^16

Tk mk nha

9 tháng 1 2018

bạn Nguyễn Anh Quân bạn nên xen lại câu 7.213 và 216 đi bạn

28 tháng 6 2017

a) 2100 = ( 220 ) 5 = 1 048 5765

365 = ( 313 ) 5 = 1 594 3235

Ta có : 1 048 5765 < 1 594 3235

=> 2100 < 365

26 tháng 9 2016

Ta có:

\(\left(2015^{2015}+2016^{2015}\right)^{2016}=\left(2015^{2015}+2016^{2015}\right)^{2015}.\left(2015^{2015}+2016^{2015}\right)\)

\(>\left(2015^{2015}+2016^{2015}\right)^{2015}.2016^{2015}=\left[\left(2015^{2015}+2016^{2015}\right)2016\right]^{2015}\)

\(>\left(2015^{2015}.2015+2016^{2015}.2016\right)^{2015}=\left(2015^{2016}+2016^{2016}\right)^{2015}\)

Vậy \(\left(2015^{2015}+2016^{2015}\right)^{2016}>\left(2015^{2016}+2016^{2016}\right)^{2015}\)

23 tháng 9 2016

1. Ta sẽ chứng minh \(2015^{2016}>2016^{2015}\)

\(\Leftrightarrow2016^{2015}-2015^{2016}< 0\Leftrightarrow2016^{2016}-2016.2015^{2016}< 0\)

\(\Leftrightarrow2016.2016^{2016}-2015.2016^{2016}-2016.2015^{2016}< 0\)

\(\Leftrightarrow2016\left(2016^{2016}-2015^{2016}\right)< 2015.2016^{2016}\)

\(\Leftrightarrow2016\left(2016^{2015}+2016^{2014}.2015+...+2015^{2015}\right)< 2015.2016^{2016}\)

\(\Leftrightarrow2016^{2015}.2015+...+2016.2015^{2015}< 2014.2016^{2016}\)

\(\Leftrightarrow2016^{2014}.2015+2016^{2013}.2015^2+...+2015^{2015}< 2014.2016^{2015}\)

\(\Leftrightarrow2015^{2015}< \left(2016^{2015}-2015.2016^{2014}\right)+\left(2016^{2015}-2015^2.2016^{2013}\right)\)

\(+...+\left(2016^{2015}-2015^{2014}.2016\right)\)

\(\Leftrightarrow2015^{2015}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)

Lại có \(2015^{2015}=2014.2015^{2014}+2015^{2014}< 2014.2016^{2014}+2015^{2014}\)

Mà \(2015^{2014}< 2013.2016^{2014}.2015\)

nên \(2015^{2014}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)

Vậy \(2015^{2016}>2016^{2015}.\)

19 tháng 8 2020

Giúp tui đi mn

19 tháng 8 2020

Giúp đi ạ

Cần gấp ạ