\(\ne\)0)

so sánh 7.213 và 2...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2018

3^2n = (3^2)^n = 9^n

2^3n = (2^3)^n = 8^n

Vì 9^n > 8^n => 3^2n > 2^3n

7.2^13 < 8.2^13 = 2^3.2^13 = 2^3+13 = 2^16

=> 7.2^13 < 2^16

Tk mk nha

9 tháng 1 2018

bạn Nguyễn Anh Quân bạn nên xen lại câu 7.213 và 216 đi bạn

g, Ta có :

\(54^8=\left(54^2\right)^4=2916^4\)

\(21^{12}=\left(21^3\right)^4=9261^4\)

Vì 2916 < 9261 nên \(2916^4< 9261^4\)

Vậy \(58^8< 21^{12}\) .

h, Ta có :

\(2^{91}=\left(2^{13}\right)^7=8192^7\)

\(5^{35}=\left(5^5\right)^7=3125^7\)

Vì 8192 > 3125 nên \(8192^7>3125^7\)

Vậy \(2^{91}>5^{35}\) .

8 tháng 10 2020

a) Ta có: \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)

b) Ta có: \(2^{31}=\left(2\frac{31}{21}\right)^{21}=2,7822^{21}< 3^{21}\Rightarrow2^{31}< 3^{21}\)

c) Ta có: \(3^{30}=\left(3^3\right)^{10}=27^{10}\)

\(2^{30}=\left(2^3\right)^{10}=8^{10}\)

\(4^{30}=\left(4^3\right)^{10}=64^{10}\)

Lại có: \(3.24^{10}=2.24^{10}+24^{10}\Rightarrow24^{10}< 27^{10}\left(1\right)\)

\(2.24^{10}< 48^{10}< 64^{10}\left(2\right)\)

Từ 1,2 => \(24^{10}+2.24^{10}< 27^{10}+64^{10}\Rightarrow3.24^{10}< 8^{10}+27^{10}+64^{10}\)

\(\Rightarrow3.24^{10}< 3^{30}+2^{30}+4^{30}\)

31 tháng 7 2016

\(\left(\frac{1}{16}\right)^{10}\) và \(\left(\frac{1}{2}\right)^{50}\)

Ta có: \(\left(\frac{1}{2}\right)^{50}=\left[\left(\frac{1}{2}\right)^5\right]^{10}=\left(\frac{1}{32}\right)^{10}\)

Do \(\frac{1}{6}>\frac{1}{32}\Rightarrow\left(\frac{1}{6}\right)^{10}>\left(\frac{1}{32}\right)^{10}\)

Vậy \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)

31 tháng 7 2016

a) \(10^{20}\) và \(9^{10}\)

Vì 10 > 9 ; 20 > 10

nên \(10^{20}>9^{10}\)

Vậy \(10^{20}>9^{10}\)

b) \(\left(-5\right)^{30}\) và \(\left(-3\right)^{50}\)

Ta có: \(\left(-5\right)^{30}=5^{30}=\left(5^3\right)^{10}=125^{10}\)

           \(\left(-3\right)^{50}=3^{50}=\left(3^5\right)^{10}=243^{10}\)

Vì 243 > 125 nên \(125^{10}< 243^{10}\)

Vậy \(\left(-5\right)^{30}< \left(-3\right)^{50}\)

c) \(64^8\) và \(16^{12}\)

Ta có: \(64^8=\left(4^3\right)^8=4^{24}\)

          \(16^{12}=\left(4^2\right)^{12}=4^{24}\)

Vậy \(64^8=16^{12}\left(=4^{24}\right)\)

d) \(\left(\frac{1}{6}\right)^{10}\) và \(\left(\frac{1}{2}\right)^{50}\)

Ta có: \(\left(\frac{1}{6}\right)^{10}=\left[\left(\frac{1}{2}\right)^4\right]^{10}=\left(\frac{1}{2}\right)^{40}\)

Vì 40 < 50 nên \(\left(\frac{1}{2}\right)^{40}< \left(\frac{1}{2}\right)^{50}\)

Vậy \(\left(\frac{1}{16}\right)^{10}< \left(\frac{1}{2}\right)^{50}\)

31 tháng 10 2016

a) Ta có: (-32)9 = [(-2)5]9 = (-2)45 = (-2)13 . 232

(-18)13 = (-2 . 9)13 = (-2)13 . 913

Xét 232 và 326:

232 = (24)8 = (23 . 2)8 = (23)8 . 28 = 88 . (22)4 = 88 . 44

913 = 98 . 95

Vì 88 < 98 và 44 < 95

\(\Rightarrow\) 88 . 44 < 98 . 95

\(\Rightarrow\) (-2)13 . 232 > (-2)13 . 913

Vậy (-32)9 > (-18)13

 

31 tháng 10 2016

b)Ta có:\(5^{21}< 5^{25}=5^{10}\cdot5^{15}< 6^{10}\cdot20^{10}=120^{10}< 124^{10}\)

\(\Rightarrow5^{21}< 124^{10}\)