Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 333^444= 111^444 x 3^444
444^333 = 111^333 x 4^333
Tách: 3^444 = (3^4)^111 =81^111 <=>4^333 = (4^3)^111 = 64^111
Mà: {111^444 > 111^333 (1)
{81^111 > 64^111 hay: (3^4)^111 > (4^3)^111 (2)
Từ (1) và (2) ta có:333^444 > 444^333
a, 7 . 2 13 va 216
1413 ; 216 . Nhu vay 1413 > 216
b, 2115 va 275 . 498
2115 ; 132313 . Nhu vay 2115 < 132313
c, 7245 - 7244 va 7244 - 7243
72 ; 72 . Nhu vay 72 = 72
d,1030 va 2100
1030 > 2100 vi 10+10+10+..+10[ 30 lan nhu vay]
e,333444 va 444333
333444 = 444333
j, 1340 va 2161
1340 < 2161 vi 40 < 161
g,5300 va 3453
5300 < 3453 vi 300<453
1340 và 2161
Ta có :
2161 > 2160 = ( 24)40 = 1640
Vì 16 > 13
Nên 1340 < 2161
a) \(7.2^{13}< 8.2^{13}=2^3.2^{13}=2^{16}\)
b) \(3^{2n}=\left(3^2\right)^n=9^n>8^n=\left(2^3\right)^n=2^{3n}\)
c) \(21^{15}=\left(3.7\right)^{15}=3^{15}.7^{15}\) (1)
\(27^5.49^8=\left(3^3\right)^5.\left(7^2\right)^8=3^{15}.7^{16}\) (2)
(1) và (2) suy ra \(21^{15}< 27^3.49^8\)
d) \(3^{500}=3^{5.100}=\left(3^5\right)^{100}=234^{100}\) (3)
\(7^{300}=\left(7^3\right)^{100}=343^{100}\) (4)
Từ (3) và (4) suy ra \(3^{500}< 7^{300}\)
e) \(3^{21}=3.3^{20}=3.\left(3^2\right)^{10}=3.9^{100}\) (5)
\(2^{31}=2.2^{30}=2.\left(2^3\right)^{10}=2.8^{100}< 3.9^{100}\) (6)
Từ (5) và (6) suy ra \(3^{21}>2^{31}\)
g) \(202^{303}=\left(2.101\right)^{3.101}=\left(2^3\right)^{101}.101^{3.101}=8^{101}.101^{3.101}=8^{101}.101^{101}.101^{2.101}=808^{101}.101^{2.101}\)
\(303^{202}=\left(3.101\right)^{2.101}=\left(3^2\right)^{101}.101^{2.101}=9^{101}.101^{2.101}\)
Suy ra \(202^{303}>303^{202}\)
1. \(3^{54}=\left(3^2\right)^{27}=9^{27}\)
\(2^{81}=\left(2^3\right)^{27}=8^{27}\)
\(\text{Vì }9>8\text{ nên }9^{27}>8^{27}\)
\(\text{Vậy }3^{54}>2^{81}.\)
2. \(333^{444}=\left(3.111\right)^{444}=3^{444}.111^{444}=\left(3^4\right)^{111}.111^{444}=81^{111}.111^{444}\)
\(444^{333}=\left(4.111\right)^{333}=4^{333}.111^{333}=\left(4^3\right)^{111}.111^{333}=64^{111}.111^{333}\)
\(\text{Vì }81^{111}.111^{444}>64^{111}.111^{333}\text{ nên }333^{444}>444^{333}.\)
3. \(10^{30}=\left(10^3\right)^{10}=1000^{10}\)
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
Vì 1000 < 1024 nên 100010 < 102410.
Vậy \(10^{30}<2^{100}.\)
\(\left(2.101\right)^{303}=\left(2.101\right)^{3.101}\)
\(\left(2^3.101^3\right)^{101}\)
\(\left(8.101^3\right)^{101}\)
Còn \(303^{202}\)\(=\left(3^3.101^3\right)^{101}\)
\(=\left(9.101^3\right)^{101}\)
=>\(202^{303}< 303^{202}\)
Ta có : 333444 = (111.3)444 = 111444.3444
444333 = (111.4)333 = 111333.4333
Tách : 3444 = 34.111 = 81111
4333 = 43.111 = 64111
Mà 111444 > 111333 (1)
81111 > 64111 hay 3444 > 4333 (2)
Từ (1) và (2) ta có : 3444 > 4333