\(7.2^{13}\)và   \(2^{16}\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2017

a) \(7.2^{13}< 8.2^{13}=2^3.2^{13}=2^{16}\)

b) \(3^{2n}=\left(3^2\right)^n=9^n>8^n=\left(2^3\right)^n=2^{3n}\)

c) \(21^{15}=\left(3.7\right)^{15}=3^{15}.7^{15}\)          (1)

    \(27^5.49^8=\left(3^3\right)^5.\left(7^2\right)^8=3^{15}.7^{16}\)    (2)

   (1) và (2) suy ra  \(21^{15}< 27^3.49^8\)

d) \(3^{500}=3^{5.100}=\left(3^5\right)^{100}=234^{100}\)      (3)

     \(7^{300}=\left(7^3\right)^{100}=343^{100}\)                        (4)

Từ (3) và (4) suy ra \(3^{500}< 7^{300}\)

e) \(3^{21}=3.3^{20}=3.\left(3^2\right)^{10}=3.9^{100}\)                   (5)

    \(2^{31}=2.2^{30}=2.\left(2^3\right)^{10}=2.8^{100}< 3.9^{100}\)  (6)

 Từ (5) và (6) suy ra \(3^{21}>2^{31}\)

g) \(202^{303}=\left(2.101\right)^{3.101}=\left(2^3\right)^{101}.101^{3.101}=8^{101}.101^{3.101}=8^{101}.101^{101}.101^{2.101}=808^{101}.101^{2.101}\)

    \(303^{202}=\left(3.101\right)^{2.101}=\left(3^2\right)^{101}.101^{2.101}=9^{101}.101^{2.101}\)

Suy ra \(202^{303}>303^{202}\)

29 tháng 9 2017

\(\left(2.101\right)^{303}=\left(2.101\right)^{3.101}\)

\(\left(2^3.101^3\right)^{101}\)

\(\left(8.101^3\right)^{101}\)

Còn \(303^{202}\)\(=\left(3^3.101^3\right)^{101}\)

\(=\left(9.101^3\right)^{101}\)

=>\(202^{303}< 303^{202}\)

29 tháng 9 2017

lol bai kho ko ae

18 tháng 8 2018

So sánh : 

a, 6^25  và 5 . 6^24 

6^25 = 6^24 . 6^1 =6^24 . 6 

Vì 6^24 . 6 > 5 . 6^24 ( 6 > 5 ) =>  6^25   > 5 . 6^24 

Vậy 6^25 > 5 . 6^24 

b, 7 . 2^16 và 2^19 

2^19 = 2^16 . 2^3 = 2^16 . 8 

Vì 7 . 2^16 < 2^16 . 8 ( 7 < 8 ) => 7 . 2^16 < 2^19

Vậy 7 . 2^16 < 2^19

18 tháng 8 2018

a >

b <

c > 

 Nhớ k cho mk nha

\(6.5^{22}=\left(5+1\right).5^{22}\)

\(=5.5^{22}+5^{22}.1\)

\(=5^{23}+5^{22}\Rightarrow5^{23}< 6.5^{22}\)

Câu b tương tự nha

29 tháng 7 2016

\(5^{23}< 6.5^{22}\)

\(7.2^{13}>2^{16}\)

\(21^{15}< 27^5.49^8\)

31 tháng 7 2015

Biết làm câu e thôi à.

202303=(2.101)3.101=(23.1013)101=(8.1013)101

303202=(3.101)2.101=(32.1012)101=(9.1012)101

Ta có: 8.1013=8.101.101>  9.1012

\(\Rightarrow\)202303 > 303202

9 tháng 11 2016

CÓ LỘN K , DỄ MÀ 

5 tháng 8 2018

a) \(16^{12}=4^{2\cdot12}=4^{24}\)

\(64^8=4^{4\cdot8}=4^{32}\)

=>\(64^8>16^{12}\)

5 tháng 8 2018

b) 

\(5^{23}=5.5^{22}\)

=> \(6.5^{22}>5^{23}\)

2 tháng 12 2017

a)1619<815

b)2711<818

\(a)16^{19}=\left(8\times2\right)^{19}=8^{19}\times2^{19}>8^{19}>8^{15}\)

\(\Rightarrow16^{19}>8^{15}\)

\(b)81^8=\left(3^4\right)^8=3^{24}< 3^{33}=\left(3^3\right)^{11}=27^{11}\)

\(\Rightarrow27^{11}>81^8\)

\(c)625^5=\left(5^4\right)^5=5^{20}< 5^{21}=\left(5^3\right)^7=125^7\)

\(\Rightarrow125^7>625^5\)

\(d)244^{11}>243^{11}=\left(3^5\right)^{11}=3^{55}>3^{52}=\left(3^4\right)^{13}=81^{13}>80^{13}\)

\(\Rightarrow244^{11}>80^{13}\)

\(d)31^{17}>17^{17}>17^{14}\)

\(\Rightarrow31^{17}>17^{14}\)