Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Ta có}:\left|-\frac{2016}{2017}\right|>0\)
\(\left(\frac{2017}{-2016}\right)^{2001}< 0\left(\text{số mũ lẻ}\right)\)
\(\text{Do đó }\)\(\left|-\frac{2016}{2017}\right|>\left(\frac{2017}{-2016}\right)^{2001}\)
\(\text{Vậy}\)\(\left|-\frac{2016}{2017}\right|>\left(\frac{2017}{-2016}\right)^{2001}\)
Ta có : \(|\frac{-2016}{2017}|>0>\left(\frac{2017}{-2016}\right)^{2001}\)
\(\Rightarrow|\frac{-2016}{2017}|>\left(\frac{2017}{-2016}\right)^{2001}\)
Ta có :
\(B=\frac{10^{2001}+1}{10^{2002}+1}< \frac{10^{2001}+10}{10^{2002}+10}=\frac{10.\left(10^{2000}+1\right)}{10.\left(10^{2001}+1\right)}=\frac{10^{2000}+1}{10^{2001}+1}=A\)
\(\Rightarrow B< A\)
Ta có:
\(\left(2015^{2015}+2016^{2015}\right)^{2016}=\left(2015^{2015}+2016^{2015}\right)^{2015}.\left(2015^{2015}+2016^{2015}\right)\)
\(>\left(2015^{2015}+2016^{2015}\right)^{2015}.2016^{2015}=\left[\left(2015^{2015}+2016^{2015}\right)2016\right]^{2015}\)
\(>\left(2015^{2015}.2015+2016^{2015}.2016\right)^{2015}=\left(2015^{2016}+2016^{2016}\right)^{2015}\)
Vậy \(\left(2015^{2015}+2016^{2015}\right)^{2016}>\left(2015^{2016}+2016^{2016}\right)^{2015}\)
1. Ta sẽ chứng minh \(2015^{2016}>2016^{2015}\)
\(\Leftrightarrow2016^{2015}-2015^{2016}< 0\Leftrightarrow2016^{2016}-2016.2015^{2016}< 0\)
\(\Leftrightarrow2016.2016^{2016}-2015.2016^{2016}-2016.2015^{2016}< 0\)
\(\Leftrightarrow2016\left(2016^{2016}-2015^{2016}\right)< 2015.2016^{2016}\)
\(\Leftrightarrow2016\left(2016^{2015}+2016^{2014}.2015+...+2015^{2015}\right)< 2015.2016^{2016}\)
\(\Leftrightarrow2016^{2015}.2015+...+2016.2015^{2015}< 2014.2016^{2016}\)
\(\Leftrightarrow2016^{2014}.2015+2016^{2013}.2015^2+...+2015^{2015}< 2014.2016^{2015}\)
\(\Leftrightarrow2015^{2015}< \left(2016^{2015}-2015.2016^{2014}\right)+\left(2016^{2015}-2015^2.2016^{2013}\right)\)
\(+...+\left(2016^{2015}-2015^{2014}.2016\right)\)
\(\Leftrightarrow2015^{2015}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)
Lại có \(2015^{2015}=2014.2015^{2014}+2015^{2014}< 2014.2016^{2014}+2015^{2014}\)
Mà \(2015^{2014}< 2013.2016^{2014}.2015\)
nên \(2015^{2014}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)
Vậy \(2015^{2016}>2016^{2015}.\)
Tính từ máy tính casio fx 570 es plus hoặc fx 570 vn plus
Ta thu đc kết quả:
A>B
1a, Ta có : 2S=2+2^2+2^3+...+2^51
=>2S- S=(2+2^2+2^3+...+2^51)-(1+2+2^2+...+2^50)
=> S = 2^51-1
Vậy S < 2^51
1,b 24^54.54^24.2^10 chia hết 72^63
24^54.54^24.2^10=(2^3.3)^54.(3^3.2)^24...
=(2^3)^54.3^54.(3^3)^24.2^24.2^10
= 2^162.2^24.2^10.3^54.3^72
=2^196.3^126
72^63=(2^3.3^2)^63
=(2^3)^63(.3^2)^63=2^189.3^126
vì 2^196.3^126 chia hết 2^189.3^126
=>24^54.54^24.2^10 chia hết 72^63
Đăt S = 3^(n+2)-2^(n+2)+3^n-2^n
= 3^(n+2) + 3^n - [2^(n+2) + 2^n]
Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10)
Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5)
Suy ra S chia hết cho 10.
2 Ta có M =|x-2002|+|x-2001| => M ≥ | x-2002+x-2001|
=> M ≥ | 2x-4003 | va | 2x-4003 | ≥ 0
Có 2 truong hop 2x ≤ 4003 va 2x ≥ 4003
Th1 : 2x ≤ 4003
=> M ≥ 4003-2x ≥ 0
Để m nho nhat thi 2x phai lon nhat
=> 2x=4003=>x=\(\frac{4003}{2}\)
M ≥ 4003-4003=0
Th2 2x ≥ 4003
M ≥ 2x-4003 ≥0
Để M nho nhat thi 2x phai nho nhat
=> 2x=4003=>x=4003/2
M ≥ 4003 -4003=0
Tu 2 truong hop tren ta co GTNN cua M la 0
Xay ra khi x=4003/2
Để M đạt GTNN thì:
|x-2002|+|x-2001|> hoặc = 0
Vì |x-2002|> hoặc = 0
|x-2001|> hoặc = 0
Nếu |x-2002|=0
=>x-2002=0
x=2002+0
x=2002
Thay x=2002 ta có:
|2002-2002|+|2002-2001|
=|0|+|1|
=0+1
=1
=> GTNN của M=1
Bài giải
Ta có :
\(2^{255}=\left(2^{17}\right)^{15}\) \(>\left(2^{16}\right)^{15}=\left(2^8\right)^{30}=256^{30}\)
\(3^{150}=\left(3^{10}\right)^{15}=\left(3^5\right)^{30}=243^{30}\)
\(\text{Vì }256^{30}>243^{30}\text{ }\Rightarrow\text{ }2^{255}>3^{150}\)
Ta có: 22999 < 23000 = ( 23)1000 = 81000
32001 > 32000 = (32)1000 = 91000
Vì 81000 < 91000
Nên 22999 < 32001