K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2017

1a, Ta có : 2S=2+2^2+2^3+...+2^51

=>2S- S=(2+2^2+2^3+...+2^51)-(1+2+2^2+...+2^50)

=> S = 2^51-1

Vậy S < 2^51

1,b 24^54.54^24.2^10 chia hết 72^63 

24^54.54^24.2^10=(2^3.3)^54.(3^3.2)^24... 

=(2^3)^54.3^54.(3^3)^24.2^24.2^10 

= 2^162.2^24.2^10.3^54.3^72 

=2^196.3^126 

72^63=(2^3.3^2)^63 

=(2^3)^63(.3^2)^63=2^189.3^126 

vì 2^196.3^126 chia hết 2^189.3^126 

=>24^54.54^24.2^10 chia hết 72^63 

Đăt S = 3^(n+2)-2^(n+2)+3^n-2^n

= 3^(n+2) + 3^n - [2^(n+2) + 2^n] 


Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10)

 
Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5) 

Suy ra S chia hết cho 10.

2 Ta có M =|x-2002|+|x-2001| => M ≥ | x-2002+x-2001|

=> M ≥ | 2x-4003 | va | 2x-4003 | ≥ 0

Có 2 truong hop 2x ≤ 4003 va 2x ≥ 4003

Th1 : 2x ≤ 4003

=> M ≥ 4003-2x ≥ 0

Để m nho nhat thi 2x phai lon nhat 

=> 2x=4003=>x=\(\frac{4003}{2}\)

M ≥ 4003-4003=0                  

Th2 2x ≥ 4003

M ≥ 2x-4003 ≥0

Để M nho nhat thi 2x phai nho nhat

=> 2x=4003=>x=4003/2

M ≥ 4003 -4003=0

Tu 2 truong hop tren ta co GTNN cua M la 0

Xay ra khi x=4003/2

4 tháng 9 2017

Để M đạt GTNN thì:

|x-2002|+|x-2001|> hoặc = 0

Vì |x-2002|> hoặc = 0

|x-2001|> hoặc = 0

Nếu |x-2002|=0

=>x-2002=0

x=2002+0

x=2002

Thay x=2002 ta có:

|2002-2002|+|2002-2001|

=|0|+|1|

=0+1

=1

=> GTNN của M=1

3 tháng 9 2017

Bài 1 : a, Ta có : (-1)3 . (-1)5 . (-1)7  . (-1)9 . (-1)11 . (-1)13

= (-1)(-1).(-1).(-1).(-1).(-1) 

= (-1)6

= 1

b, (1000 - 13) . (1000 - 23) . (1000 - 33) . ... . (1000 - 503)

= (1000 - 13) . (1000 - 23) . (1000 - 33) .... (1000 - 103).......(1000 - 503)

= (1000 - 13) . (1000 - 23) . (1000 - 33) .... 0 ........(1000 - 503)

= 0 

Bài 2 : 

Đặt A = 1+ 2+ 3+ ... + 10= 385

=> 22(1+ 2+ 3+ ... + 102) = 22.385

=> 22 + 42 + 62 + ..... + 202 = 4.385

=> 22 + 42 + 62 + ..... + 202 = 1540

Vậy 22 + 42 + 62 + ..... + 202 = 1540

4 tháng 1 2018

bài 3:

a) 2S=2+22+23+24+...+251

    2S-S=251-1

mà 251-1<251

Suy ra:s<251

9 tháng 7 2015

a)\(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{17}\left(2^4-2\right)=2^{17}.14\)

suy ra 8^7-2^18 chia hết cho 14

9 tháng 7 2015

a) 8^7 = (2^3)^7 = 2^21

Vậy 8^7-2^18 = 2^21 - 2^18 = 2^18(2^3-1)= 2^18 x 7 chia hết cho 7 (ĐPM)

b) 5^5 - 5^4 + 5^3 = 5^3(5^2-5+1) = 5^3 x 21 = 5^3 x 3 x 7 chia hết cho 7 (ĐPCM)

c) 7^6 + 7^5 - 7^4 = 7^4 x ( 7^2+7-1) = 7^4 x 55 = 7^4 x 5 x 11 chia hết cho 11 (ĐPCM)

d) Ta có: 24^54 = 8^54 x 3^54 = (2^3)^54 x 3^54 = 2^162 x 3^54

72^63 = 8^63 x 9^63 = (2^3)^63 x (3^2)^63 = 2^189 x 3^126

Vậy 24^54 x 5^24 x 2^10 = 5^24 x 2^10 x 2^162 x 3^54 = 2^172 x 3^54 x 5^24

Rõ ràng  2^172 x 3^54 x 5^24 không chia hết cho 2^189 x 3^126 nên 24^54 x 5^24 x 2^10 không chia hết cho 72^63 (bài này mình thấy lạ, nếu sai ở đâu các bạn chỉ ra nha)

e) \(3^{n+2}-2^{n+2}+3^n+2^n=3^n.9-2^n.4+3^n+2^n=3^n\left(9+1\right)-2^n\left(4-1\right)=10.3^n-2^n.3\)

Rõ ràng 10.3^n - 2^n.3 không chia hết cho 10 (bạn ấn máy tính thử, mình gặp bài này rồi, chắc đề sai)

 

11 tháng 6 2015

1,2^5 < 2^n < 2^7 => n = 6

2,2^4 \(\ge\)2^n > 2^2 => n= 3 ; 4

3, 3^ 3 \(\le3^n\le3^4\) => n = 3 ; 4

Bài 2

a, 5^5 - 5^4 + 5^3 = 5^3(5^2 - 5 + 1) = 5^3 .21=3.5^3.7 chia hêt cho 7

b,7^6 + 7^5 -7^ 4 =7^4 ( 7^2 + 7 - 1 ) = 7^ 4 .55=11.5.7^4 chia hết cho 11 

 

 

 

 
 

3 tháng 10 2016

lắm thế ai làm nổi

9 tháng 7 2015

\(7^6-7^5-7^4=7^4\left(7^2-7-1\right)=7^4.55\)

mà 55 chi hết cho 11

suy ra dãy số trên chia hết cho 11

9 tháng 7 2015

d) 2454.524.210 = (23.3)54.524.210 = 2 162.354.524.210 = 2172.354.524 

7263 = (23.32)63 = 2189.3126 chia hết cho 2172.354

=> 7263 chia hết cho   2454.524.210 

Đề phải sửa lại là:  2454.524.210 chia hết 7263 

e) ) 3n+2-2n+2+3n+2n = 3n .(32 +1) + 2n (1 + 22) = 10.3n + 5.2n 

10.3n chia hết cho 10; 5.2n = 10.2n-1 chia hết cho 10

=> 10.3n + 5.2n  chia hết cho 10 => đpcm 

 

30 tháng 11 2017

B1: A=|x-13|+|x-2014|=|x-13|+|2014-x| \(\ge\) |x-13+2014-x| = 2001

Dấu "=" xảy ra khi \(\left(x-13\right)\left(2014-x\right)\ge0\Rightarrow13\le x\le2014\)

Vậy GTNN của A = 2001 khi 13\(\le\)x\(\le\)2014

B2

a, 3n+2-2n+2+3n-2n

=3n.32-2n.22+3n-2n

=3n(9+1)-2n(4+1)

=3n.10-2n.5

=3n.10-2n-1.10

=10(3n-2n-1) chia hết cho 10

b, \(\left(x-7\right)^{x+1}+\left(x-7\right)^{x+11}=0\)

\(\Rightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}\Rightarrow\orbr{\begin{cases}x-7=0\\x-7=\pm1\end{cases}}\Rightarrow x\in\left\{6;7;8\right\}}\)