Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: M+N-P
\(=7a^2-2a+1-a^2+4\)
\(=6a^2-2a+5\)
b: \(=2y-x-2x+y+y+3x-5y+x\)
\(=-3x+3y-4y+4x=x-y\)
\(=a^2+2ab+b^2-a^2+2ab-b^2=4ab\)
c: \(=\left[{}\begin{matrix}5x-3-2x+1=3x-2\left(x>=\dfrac{1}{2}\right)\\5x-3+2x-1=7x-4\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\)
\(A=2y-x-\left\{2x-y-\left[y+3x-\left(5y-x\right)\right]\right\}\)
\(=2y-x-\left\{2x-y-\left[y+3x-5y+x\right]\right\}\)
\(=2y-x-\left\{2x-y-y-3x+5y-x\right\}\)
\(=2y-x-2x+y+y+3x-5y+x\)
\(=\left(2y+y+y-5y\right)+\left(-x-2x+3x+x\right)\)
= \(-y+x\)
Thay \(x=a^2+2ab+b^2,y=a^2-2ab+b^2\) vào đa thức -y + x :
\(-\left(a^2-2ab+b^2\right)+\left(a^2+2ab+b^2\right)\)
\(=-a^2+2ab-b^2+a^2+2ab+b^2\)
\(=\left(-a^2+a^2\right)+\left(2ab+2ab\right)+\left(-b^2+b^2\right)\)
= 4ab
\(A=2y-x-\left\{2x-y-\left[y+3x-\left(5y-x\right)\right]\right\}\\ =2y-x-\left\{2x-y-y-3x+5y-x\right\}\\ =2y-x-2x+y+y+3x-5y+x\\ =-y+x=-\left(a^2-2ab+b^2\right)+\left(a^2+2ab+b^2\right)\\ =-a^2+2ab-b^2+a^2+2ab+b^2=4ab\)
\(|a| = 1,5 \) \(\Rightarrow a=1,5\) hoặc \(a=−1,5\)
* Với a = 1,5 và b = −0,75 ta có :
M = 0 ; N = \(3\dfrac{5}{12}\) ; \(P=\dfrac{7}{18}\)
* Với a = 1,5 và b = −0,75 ta có :
\(M=1\dfrac{1}{2};N=1\dfrac{11}{12};P=\dfrac{7}{18}\)
a: \(M+N-P=2a^2-3a+1+5a^2+a-a^2+4=6a^2-2a+5\)
b: \(=2y-x-\left\{2x-y-\left[3x+y-5y+x\right]\right\}\)
\(=2y-x-\left\{2x-y-\left[4x-4y\right]\right\}\)
\(=2y-x-\left\{2x-y-4x+4y\right\}\)
\(=2y-x-\left[-2x+3y\right]\)
\(=-x+2y+2x-3y=x-y=\left(a-b\right)^2-\left(a-b\right)^2\)
=4ab
c: TH1: x>=1/2
A=5x-3-2x+1=3x-2
TH2: x<1/2
A=5x-3+2x-1=7x-4
Ta có:
\(2\left(a^2+b^2\right)=5ab\)
\(\Leftrightarrow2a^2-5ab+2b^2=0\)
\(\Leftrightarrow2a^2-4ab-ab+2b^2=0\)
\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)
\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)
\(\Leftrightarrow a=2b\) hay \(b=2a\)
Vì \(a>b>c\Leftrightarrow a=2b\)
\(\Leftrightarrow\frac{3a-b}{2a+b}=\frac{3.2b-b}{2.2b+b}=\frac{5b}{5b}=1\)
Vậy \(\frac{3a-b}{2a+b}=1\)
a) \(\frac{a^2m-a^2n-b^2n+b^2m}{a^2+b^2}=\frac{a^2\left(m-n\right)+b^2\left(m-n\right)}{a^2+b^2}\)
\(=\frac{\left(m-n\right)\left(a^2+b^2\right)}{a^2+b^2}=m-n\)
b) \(\frac{\left(ab+bc+cd+ad\right)abcd}{\left(c+d\right)\left(a+b\right)+\left(b-c\right)\left(a-b\right)}\)
\(=\frac{\left[b.\left(a+c\right)+d.\left(a+c\right)\right].abcd}{ac+bc+da+db+ab-b^2-ca+bc}\)
\(=\frac{\left(a+c\right)\left(d+b\right)abcd}{2bc+da+db+ab-b^2}\)
Trước tiên ta rút gọn biểu thức, sau đó mới thay các giá trị của m và p vào biểu thức đã rút gọn. Ta có:
\(2p-m-\left\{2m-p-\left[p+3m-\left(5p-m\right)\right]\right\}\)
\(=2p-m-\left\{2m-p-\left[p+3m-5p+m\right]\right\}\)
\(=2p-m-\left\{2m-p+4p-4m\right\}\)
\(=2p-m-3p+2m=m-p\)
Thay các giá trị của m và p vào biểu thức rút gọn m - p này được:
\(m-p=a^2+2ab+b^2-\left(a^2-2ab+b^2\right)\)
\(=a^2+2ab+b^2-a^2+2ab-b^2=4ab\)