\(2p-m-\left\{2m-p-\left[p+3m-\left(5p-5\right)\right]\right\}\) khi <...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

Trước tiên ta rút gọn biểu thức, sau đó mới thay các giá trị của m và p vào biểu thức đã rút gọn. Ta có:

\(2p-m-\left\{2m-p-\left[p+3m-\left(5p-m\right)\right]\right\}\)

\(=2p-m-\left\{2m-p-\left[p+3m-5p+m\right]\right\}\)

\(=2p-m-\left\{2m-p+4p-4m\right\}\)

\(=2p-m-3p+2m=m-p\)

Thay các giá trị của m và p vào biểu thức rút gọn m - p này được:

\(m-p=a^2+2ab+b^2-\left(a^2-2ab+b^2\right)\)

\(=a^2+2ab+b^2-a^2+2ab-b^2=4ab\)

a: M+N-P

\(=7a^2-2a+1-a^2+4\)

\(=6a^2-2a+5\)

b: \(=2y-x-2x+y+y+3x-5y+x\)

\(=-3x+3y-4y+4x=x-y\)

\(=a^2+2ab+b^2-a^2+2ab-b^2=4ab\)

c: \(=\left[{}\begin{matrix}5x-3-2x+1=3x-2\left(x>=\dfrac{1}{2}\right)\\5x-3+2x-1=7x-4\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\)

13 tháng 5 2017

\(A=2y-x-\left\{2x-y-\left[y+3x-\left(5y-x\right)\right]\right\}\)

\(=2y-x-\left\{2x-y-\left[y+3x-5y+x\right]\right\}\)

\(=2y-x-\left\{2x-y-y-3x+5y-x\right\}\)

\(=2y-x-2x+y+y+3x-5y+x\)

\(=\left(2y+y+y-5y\right)+\left(-x-2x+3x+x\right)\)

= \(-y+x\)

Thay \(x=a^2+2ab+b^2,y=a^2-2ab+b^2\) vào đa thức -y + x :

\(-\left(a^2-2ab+b^2\right)+\left(a^2+2ab+b^2\right)\)

\(=-a^2+2ab-b^2+a^2+2ab+b^2\)

\(=\left(-a^2+a^2\right)+\left(2ab+2ab\right)+\left(-b^2+b^2\right)\)

= 4ab

13 tháng 5 2017

\(A=2y-x-\left\{2x-y-\left[y+3x-\left(5y-x\right)\right]\right\}\\ =2y-x-\left\{2x-y-y-3x+5y-x\right\}\\ =2y-x-2x+y+y+3x-5y+x\\ =-y+x=-\left(a^2-2ab+b^2\right)+\left(a^2+2ab+b^2\right)\\ =-a^2+2ab-b^2+a^2+2ab+b^2=4ab\)

5 tháng 7 2017

\(|a| = 1,5 \) \(\Rightarrow a=1,5\) hoặc \(a=−1,5\)

* Với a = 1,5 và b = −0,75 ta có :

M = 0 ; N = \(3\dfrac{5}{12}\) ; \(P=\dfrac{7}{18}\)

* Với a = 1,5 và b = −0,75 ta có :

\(M=1\dfrac{1}{2};N=1\dfrac{11}{12};P=\dfrac{7}{18}\)

5 tháng 7 2017

wow hc giỏi lên r :v

a: \(M+N-P=2a^2-3a+1+5a^2+a-a^2+4=6a^2-2a+5\)

b: \(=2y-x-\left\{2x-y-\left[3x+y-5y+x\right]\right\}\)

\(=2y-x-\left\{2x-y-\left[4x-4y\right]\right\}\)

\(=2y-x-\left\{2x-y-4x+4y\right\}\)

\(=2y-x-\left[-2x+3y\right]\)

\(=-x+2y+2x-3y=x-y=\left(a-b\right)^2-\left(a-b\right)^2\)

=4ab

c: TH1: x>=1/2

A=5x-3-2x+1=3x-2

TH2: x<1/2

A=5x-3+2x-1=7x-4

24 tháng 2 2017

Ta có:

\(2\left(a^2+b^2\right)=5ab\)

\(\Leftrightarrow2a^2-5ab+2b^2=0\)

\(\Leftrightarrow2a^2-4ab-ab+2b^2=0\)

\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)

\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)

\(\Leftrightarrow a=2b\) hay \(b=2a\)

\(a>b>c\Leftrightarrow a=2b\)

\(\Leftrightarrow\frac{3a-b}{2a+b}=\frac{3.2b-b}{2.2b+b}=\frac{5b}{5b}=1\)

Vậy \(\frac{3a-b}{2a+b}=1\)

17 tháng 8 2020

a) \(\frac{a^2m-a^2n-b^2n+b^2m}{a^2+b^2}=\frac{a^2\left(m-n\right)+b^2\left(m-n\right)}{a^2+b^2}\)

\(=\frac{\left(m-n\right)\left(a^2+b^2\right)}{a^2+b^2}=m-n\)

b) \(\frac{\left(ab+bc+cd+ad\right)abcd}{\left(c+d\right)\left(a+b\right)+\left(b-c\right)\left(a-b\right)}\)

\(=\frac{\left[b.\left(a+c\right)+d.\left(a+c\right)\right].abcd}{ac+bc+da+db+ab-b^2-ca+bc}\)

\(=\frac{\left(a+c\right)\left(d+b\right)abcd}{2bc+da+db+ab-b^2}\)