Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(2^2-1^2\right)+\left(4^2-3^2\right)+...+\left(100^2-99^2\right)\)
\(=\left(2+1\right)\left(2-1\right)+\left(4+3\right)\left(4-3\right)+...+\left(100+99\right)\left(100-99\right)\)
\(=1+2+3+4+...+100=\frac{\left(100+1\right).100}{2}=5050\)
Bài làm :
Ta có :
\(-1^2+2^2-3^2+4^2-5^2+....+100^2\)
\(=\left(2^2-1^2\right)+\left(4^2-3^2\right)+....+\left(100^2-99^2\right)\)
\(=\left(2+1\right)\left(2-1\right)+\left(4+3\right)\left(4-3\right)+....+\left(100+99\right)\left(100-99\right)\)
\(=1+2+3+4+....+100=\frac{\left(100+1\right).100}{2}=5050\)
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
như thế này chứ:
A=1002-992+982-972+...+22-12
B=12-22+32-42+...-20082-20092
C=3.(22+1)(24+1)(28+1)(216+1)-232
C=-12+22-32+42-....+(-1)n.n2
ta chia ra làm 2 trường hợp:
nếu n chẵn: C= 22-12+42-32+....+(n2-(n-1)2)
=(2-1)(2+1)+(4-3)(4+3)+....+(n-(n-1))(n+(n-1))
= 3+7+....+(n+n-1)
=1+2+3+4+....+(n-1)+n
=\(\frac{n\left(n+1\right)}{2}\)
Nếu n lẻ: C=22-12+42-32+...+((n-1)2-(n-2)2)-n2
=(2-1)(2+1)+(4-3)(4+3)+...+(n-1-n+2)(n-1+n-2)-n2
=3+7+.....+(n-1+n-2)-n2
=1+2+3+4+....+(n-2)+(n-1)-n2
=\(\frac{n\left(n-1\right)}{2}-n^2=-\frac{n\left(n+1\right)}{2}\)
2 kết quả của n lẻ và n chẵn có thể viết chung thành 1 công thức tính: \(\left(-1\right)^n.\frac{n\left(n+1\right)}{2}\)
còn p/a số cuối cùng: 1002 là số chẵn nên bạn có thể áp dụng phần tính n chẵn đễ tìm kết quả
kết quả phần a là: 5050
k cho mk nhé bn ^_^
\(A=138^2+124.138+62^2\)
\(=138^2+2.62.138+62^2\)
\(=\left(138+62\right)^2\)
\(=200^2=40000\)
\(B=\left(100^2+98^2+...+2^2\right)-\left(99^2+97^2+....+3^2+1^2\right)\)
\(=100^2+98^2+....+2^2-99^2-97^2-....-3^2-1^2\)
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(4^2-3^2\right)+\left(2^2-1^2\right)\)
\(=\left(100+99\right)\left(100-99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=199+195+191+....+7+3\)
\(=\frac{\left(199+3\right).\left[\left(199-3\right):4+1\right]}{2}=5050\)
Vậy B = 5050
Áp dụng tính chất a2 - b2 = a2 - ab + ab - b2 = a(a - b) + b(a - b) = (a + b)(a - b)
Khi đó -12 + 22 - 32 + 42 - ... - 992 + 1002
= (22 - 12) + (42 - 32) + .... + (1002 - 992)
= (2 - 1)(2 + 1) + (4 - 3)(4 + 3) + ... + (100 - 99)(100 + 99)
= 3 + 7 + ... + 199
= 50 x (199 + 3) : 2 = 5050
-12 + 22 - 32 + 42 - ... - 992 + 1002
= -( 12 - 22 + 32 - 42 + ... + 992 - 1002 )
= -[ ( 12 - 22 ) + ( 32 - 42 ) + ... + ( 992 - 1002 ) ]
= -[ ( 1 - 2 )( 1 + 2 ) + ( 3 - 4 )( 3 + 4 ) + ... + ( 99 - 100 )( 99 + 100 ) ]
= -[ (-1).3 + (-1).7 + ... + (-1).199 ]
= -[ -3 - 7 - ... - 199 ]
= 3 + 7 + ... + 199
= \(\frac{\left(199+3\right)\left[\left(199-3\right):4+1\right]}{2}\)
= 5050