Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=-12+22-32+42-....+(-1)n.n2
ta chia ra làm 2 trường hợp:
nếu n chẵn: C= 22-12+42-32+....+(n2-(n-1)2)
=(2-1)(2+1)+(4-3)(4+3)+....+(n-(n-1))(n+(n-1))
= 3+7+....+(n+n-1)
=1+2+3+4+....+(n-1)+n
=\(\frac{n\left(n+1\right)}{2}\)
Nếu n lẻ: C=22-12+42-32+...+((n-1)2-(n-2)2)-n2
=(2-1)(2+1)+(4-3)(4+3)+...+(n-1-n+2)(n-1+n-2)-n2
=3+7+.....+(n-1+n-2)-n2
=1+2+3+4+....+(n-2)+(n-1)-n2
=\(\frac{n\left(n-1\right)}{2}-n^2=-\frac{n\left(n+1\right)}{2}\)
2 kết quả của n lẻ và n chẵn có thể viết chung thành 1 công thức tính: \(\left(-1\right)^n.\frac{n\left(n+1\right)}{2}\)
còn p/a số cuối cùng: 1002 là số chẵn nên bạn có thể áp dụng phần tính n chẵn đễ tìm kết quả
kết quả phần a là: 5050
k cho mk nhé bn ^_^
a) P = (22+42+62+...+1002)-(12+32+52+...+992)
= (22-12) + (42-32) + (62-52) + ... + (1002-992)
= (2+1)(2-1) + (4+3)(4-3) + ... + (100+99)(100-99)
= 1 + 2 + 3 + 4 + ... + 99 + 100
= \(\frac{100.101}{2}=5050\)
A=x12+2x6.6+62
xet: x12>-1
2x6.6>-1
suy ra x12+2x6.6+62>35
vay min A la 36 voi x=0
như thế này chứ:
A=1002-992+982-972+...+22-12
B=12-22+32-42+...-20082-20092
C=3.(22+1)(24+1)(28+1)(216+1)-232
b) \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^{64}-1\right)-2^{64}\)
\(=-1\)
\(\left(1^2-2^2\right)+\left(3^2-4^2\right)+....+\left(99^2-100^2\right)\)
\(=\left(1-2\right)\left(2+1\right)+\left(3-4\right)\left(4+3\right)+....+\left(99-100\right)\left(100+99\right)\)
\(=\left(-1\right)\left(1+2+3+....+100\right)=\frac{\left(-1\right)100.99}{2}=-4950\)